As key enablers for smart fabric interactive textile (SFIT) systems, textile antenna systems and platforms need to be energy-efficient, low-profile and should guarantee a stable wireless body-centric communication link. Using multiple energy harvesters on and in the antenna platform is highly recommended to enable autonomous SFIT systems. Different sensors could be added to the system for monitoring the environmental and/or biophysical parameters of rescue workers, military personnel, and other safety workers. Therefore, a wearable coupled-quarter-mode (coupled-QM) substrate-integrated waveguide (SIW) antenna with optimally, seamlessly integrated hybrid kinetic and ambient-light energy harvesters is proposed. Two QM cavities are coupled via a non-resonant slot to create a compact antenna covering the [2.4; 2.4835] GHz Industrial, Scientific and Medical (ISM) band. The antenna platform fully consists of textile materials, being protective rubber foam and copper taffeta, enabling its unobtrusive integration into protective clothing. A novel, compact way of deploying a kinetic energy harvester inside the substrate, combined with flexible power management electronics on the antenna feed plane and a flexible ambient-light photovoltaic cell on the antenna plane, is proposed. The integrated antenna platform exhibits a measured impedance bandwidth of 307 MHz, a radiation efficiency of 88.57% and maximum gain of 3.74 dBi at 2.45 GHz. Wearing the antenna platform around a person's wrist resulted in an average harvested power of 229.8 µW when walking in an illuminated room.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042844PMC
http://dx.doi.org/10.1038/s41598-023-32079-5DOI Listing

Publication Analysis

Top Keywords

antenna platform
20
antenna
10
wearable coupled-quarter-mode
8
siw antenna
8
hybrid kinetic
8
kinetic ambient-light
8
ambient-light energy
8
sfit systems
8
energy harvesters
8
platform
5

Similar Publications

Harnessing Nature's Palette: Exploring Photosynthetic Pigments for Sustainable Biotechnology.

N Biotechnol

January 2025

Institute of Sustainable Processes, University of Valladolid, Spain. Dr. Mergelina s/n., Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain. Electronic address:

Photosynthetic microorganisms such as cyanobacteria, microalgae, and anoxygenic phototrophic bacteria (APB) have emerged as sustainable and economic biotechnology platforms due to their ability to transform energy from light into chemicals through photosynthesis. The light is absorbed by photosynthetic pigment-protein antenna complexes which are composed of pigments such as bacteriochlorophylls (BChl) and carotenoids in APB, and chlorophylls (Chl), phycobiliproteins (PBP), and carotenoids in cyanobacteria and microalgae. These photosynthetic pigments are essential in the physiology of photosynthetic microorganisms and offer significant health benefits due to their potent antioxidant activity, with properties that include anticancer, antiaging, antiproliferative, anti-inflammatory, and neuroprotective effects.

View Article and Find Full Text PDF

Portable and real-time detection for tetracycline antibiotics using europium-doped LDH gel intercalated graphene quantum dots.

J Hazard Mater

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China. Electronic address:

Tetracyclines (TCs) residues pose a significant threat to the aquatic environment and human health, therefore this study aims to develop a simple, rapid, and sensitive TCs detection method. Herein, a dual-responsive gel probe (LDH-CES@N) was designed, consisting of the intercalation of graphene quantum dots into europium-doped layered double hydroxide (LDH). In the presence of TCs, the as-prepared probe exhibited dual emission fluorescence at 504 nm and 616 nm due to the synergistic effect of aggregation-induced emission and antenna effect.

View Article and Find Full Text PDF

The CRISPR-Cas12a system has shown tremendous potential for developing efficient biosensors. Albeit important, current CRISPR-Cas system-based diagnostic technologies (CRISPR-DX) highly rely on an additional preamplification procedure to obtain high sensitivity, inevitably leading to issues such as complicated assay workflow, cross-contamination, etc. Herein, a spherical protospacer-adjacent motif (PAM)-antenna-enhanced CRISPR-Cas12a system is fabricated for universal amplification-free nucleic acid detection with a detection limit of subfemtomolar.

View Article and Find Full Text PDF

Ultra-light antennas via charge programmed deposition additive manufacturing.

Nat Commun

January 2025

Advanced Manufacturing and Metamaterials Laboratory, Department of Material Science and Engineering, University of California, Berkeley, CA, USA.

The demand for lightweight antennas in 5 G/6 G communication, wearables, and aerospace applications is rapidly growing. However, standard manufacturing techniques are limited in structural complexity and easy integration of multiple material classes. Here we introduce charge programmed multi-material additive manufacturing platform, offering unparalleled flexibility in antenna design and the capability for rapid printing of intricate antenna structures that are unprecedented or necessitate a series of fabrication routes.

View Article and Find Full Text PDF

The impact of ciliary length on the mechanical response of osteocytes to fluid shear stress.

Nitric Oxide

December 2024

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China. Electronic address:

Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!