A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evanescent field trapping and propulsion of Janus particles along optical nanofibers. | LitMetric

AI Article Synopsis

  • * Current manipulation methods for these particles often lack precision and are affected by the characteristics of the surrounding fluid, posing practical challenges.
  • * The study proposes using optical forces in the evanescent field of an optical nanofiber to manipulate silica microspheres half-coated with gold, showing improved control and faster propulsion compared to traditional particles.

Article Abstract

Small composite objects, known as Janus particles, drive sustained scientific interest primarily targeted at biomedical applications, where such objects act as micro- or nanoscale actuators, carriers, or imaging agents. A major practical challenge is to develop effective methods for the manipulation of Janus particles. The available long-range methods mostly rely on chemical reactions or thermal gradients, therefore having limited precision and strong dependency on the content and properties of the carrier fluid. To tackle these limitations, we propose the manipulation of Janus particles (here, silica microspheres half-coated with gold) by optical forces in the evanescent field of an optical nanofiber. We find that Janus particles exhibit strong transverse localization on the nanofiber and much faster propulsion compared to all-dielectric particles of the same size. These results establish the effectiveness of near-field geometries for optical manipulation of composite particles, where new waveguide-based or plasmonic solutions could be envisaged.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043011PMC
http://dx.doi.org/10.1038/s41467-023-37448-2DOI Listing

Publication Analysis

Top Keywords

janus particles
20
evanescent field
8
manipulation janus
8
particles
7
janus
5
field trapping
4
trapping propulsion
4
propulsion janus
4
optical
4
particles optical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!