The meaning of words in natural language depends crucially on context. However, most neuroimaging studies of word meaning use isolated words and isolated sentences with little context. Because the brain may process natural language differently from how it processes simplified stimuli, there is a pressing need to determine whether prior results on word meaning generalize to natural language. fMRI was used to record human brain activity while four subjects (two female) read words in four conditions that vary in context: narratives, isolated sentences, blocks of semantically similar words, and isolated words. We then compared the signal-to-noise ratio (SNR) of evoked brain responses, and we used a voxelwise encoding modeling approach to compare the representation of semantic information across the four conditions. We find four consistent effects of varying context. First, stimuli with more context evoke brain responses with higher SNR across bilateral visual, temporal, parietal, and prefrontal cortices compared with stimuli with little context. Second, increasing context increases the representation of semantic information across bilateral temporal, parietal, and prefrontal cortices at the group level. In individual subjects, only natural language stimuli consistently evoke widespread representation of semantic information. Third, context affects voxel semantic tuning. Finally, models estimated using stimuli with little context do not generalize well to natural language. These results show that context has large effects on the quality of neuroimaging data and on the representation of meaning in the brain. Thus, neuroimaging studies that use stimuli with little context may not generalize well to the natural regime. Context is an important part of understanding the meaning of natural language, but most neuroimaging studies of meaning use isolated words and isolated sentences with little context. Here, we examined whether the results of neuroimaging studies that use out-of-context stimuli generalize to natural language. We find that increasing context improves the quality of neuro-imaging data and changes where and how semantic information is represented in the brain. These results suggest that findings from studies using out-of-context stimuli may not generalize to natural language used in daily life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146529PMC
http://dx.doi.org/10.1523/JNEUROSCI.2459-21.2023DOI Listing

Publication Analysis

Top Keywords

natural language
32
neuroimaging studies
16
stimuli context
16
context
15
isolated sentences
12
generalize natural
12
representation semantic
12
language
9
natural
9
meaning natural
8

Similar Publications

Semiparametric estimator for the covariate-specific receiver operating characteristic curve.

Stat Methods Med Res

January 2025

CITMAga and Department of Statistics and Operations Research, Universidade de Vigo, Vigo, Galicia, Spain.

The study of the predictive ability of a marker is mainly based on the accuracy measures provided by the so-called confusion matrix. Besides, the area under the receiver operating characteristic curve has become a popular index for summarizing the overall accuracy of a marker. However, the nature of the relationship between the marker and the outcome, and the role that potential confounders play in this relationship could be fundamental in order to extrapolate the observed results.

View Article and Find Full Text PDF

Aims: Evidence regarding the safety of early discharge following transcatheter aortic valve implantation (TAVI) is limited. The aim of this study was to evaluate the safety of very early (<24) and early discharge (24-48 h) as compared to standard discharge (>48 h), supported by the implementation of a voice-based virtual assistant using artificial intelligence (AI) and natural language processing.

Methods And Results: Single-arm prospective observational study that included consecutive patients who underwent TAVI in a tertiary hospital in 2023 and were discharged under an AI follow-up programme.

View Article and Find Full Text PDF

ChatGPT: Friend or foe in medical writing? An example of how ChatGPT can be utilized in writing case reports.

Surg Pract Sci

September 2023

USF Department of General Surgery 2 Tampa General Circle, 7th Floor Tampa, FL 33606, United States.

ChatGPT is a chatbot built on a natural language processing model which can generate human-like responses to prompts given to it. Despite its lack of domain-specific training, ChatGPT has developed remarkable accuracy in interpreting clinical information. In this article, we aim to assess what role ChatGPT can serve in medical writing.

View Article and Find Full Text PDF

Introduction: Adverse events in hospitals significantly compromise patient safety and trust in healthcare systems, with medical errors being a leading cause of death globally. Despite efforts to reduce these errors, reporting remains low, and effective system changes are rare. This systematic review explores the potential of artificial intelligence (AI) in clinical risk management.

View Article and Find Full Text PDF

A systematic review of Machine Learning and Deep Learning approaches in Mexico: challenges and opportunities.

Front Artif Intell

January 2025

CONAHCYT-Instituto Potosino de Investigación Científica y Tecnológica, A.C. División de Geociencias Aplicadas, San Luis Potosí, Mexico.

This systematic review provides a state-of-art of Artificial Intelligence (AI) models such as Machine Learning (ML) and Deep Learning (DL) development and its applications in Mexico in diverse fields. These models are recognized as powerful tools in many fields due to their capability to carry out several tasks such as forecasting, image classification, recognition, natural language processing, machine translation, etc. This review article aimed to provide comprehensive information on the Machine Learning and Deep Learning algorithms applied in Mexico.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!