Methods targeting anionic per- and polyfluoroalkyl substances (PFAS) in aquatic biota are well established, but commonly overlook many PFAS classes present in aqueous film-forming foams (AFFFs). Here, we developed an analytical method for the expanded analysis of negative and positive ion mode PFAS in fish tissues. Eight variations of extraction solvents and clean-up protocols were first tested to recover 70 AFFF-derived PFAS from the fish matrix. Anionic, zwitterionic, and cationic PFAS displayed the best responses with methanol-based ultrasonication methods. The response of long-chain PFAS was improved for extracts submitted to graphite filtration alone compared with those involving solid-phase extraction. The validation included an assessment of linearity, absolute recovery, matrix effects, accuracy, intraday/interday precision, and trueness. The method was applied to a set of freshwater fish samples collected in 2020 in the immediate vicinity (creek, n = 15) and downstream (river, n = 15) of an active fire-training area at an international civilian airport in Ontario, Canada. While zwitterionic fluorotelomer betaines were major components of the subsurface AFFF source zone, they were rarely detected in fish, suggesting limited bioaccumulation potential. PFOS largely dominated the PFAS profile, with record-high concentrations in brook sticklebacks (Culaea inconstans) from the creek (16000-110,000 ng/g wet weight whole-body). These levels exceeded the Canadian Federal Environmental Quality Guidelines (FEQG) for PFOS pertaining to the Federal Fish Tissue Guideline (FFTG) for fish protection and Federal Wildlife Diet Guidelines (FWiDG) for the protection of mammalian and avian consumers of aquatic biota. Perfluorohexane sulfonamide and 6:2 fluorotelomer sulfonate were among the precursors detected at the highest levels (maximum of ∼340 ng/g and ∼1100 ng/g, respectively), likely reflecting extensive degradation and/or biotransformation of C6 precursors originally present in AFFF formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163103 | DOI Listing |
Sci Total Environ
January 2025
Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK. Electronic address:
The widespread occurrence of new and emerging and persistent organic pollutants (NEPs and POPs) in surface water poses a risk to drinking water supply and consequently human health. The aim of this work was to investigate the occurrence and potential transport of 42 target NEPs and POPs (including per-and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides and bisphenols) along the rural and urban environments of three rivers in England. The type and concentrations of pollutants varied between the sampling days and points.
View Article and Find Full Text PDFJ Mass Spectrom
February 2025
FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of emerging contaminants that have been in use industrially since the 1940s. Their long-term and extensive commercial use has led to their ubiquitous presence in the environment. The ability to measure the bioconcentration and distribution of PFAS in the tissue of aquatic organisms helps elucidate the persistence of PFAS as well as environmental impacts.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
Poly- and perfluoroalkyl substances (PFASs) are a large class of fluorinated chemicals used in various industrial and agrochemical products such as fluorinated benzoylurea (FBU) pesticides. Initiated from an incidental and preliminary finding of three high-abundance FBUs in fish, this study implemented nontarget analysis and characterization for FBUs together with their analogues and transformation products (TPs) in fish using liquid chromatography, high-resolution mass spectrometry, and chemical species-specific algorithms. A total of 23 FBU-relevant compounds were found and tentatively/accurately elucidated with structures, including 18 PFASs and 5 non-PFAS compounds, of which 4 were original FBUs, 8 were FBU analogues, and 11 were FBU-TPs.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India. Electronic address:
Per and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals extensively used in consumer products. Perfluorobutane sulfonate (PFBS), a short-chain PFAS, has been introduced as an alternative to long-chain PFAS, but limited studies have investigated its reproductive toxicity in fish. In this study, adult zebrafish were exposed to PFBS at concentrations of 0.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Meteorology and Water Management, National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland.
In this study, the results of a comprehensive assessment of the variability in the occurrence of ten perfluorinated compounds (PFAS) in fish tissues originating from 2014 to 2019 from six fisheries in the Baltic Sea are presented. A total of 360 fish samples of three species (perch, herring and flatfish) were analysed. For the determination of PFAS, both linear and branched stereoisomers, LC-ESI-MS/MS technique preceded by simultaneous SPE isolation was validated and applied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!