Adsorption of heavy metals on natural zeolites: A review.

Chemosphere

Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden. Electronic address:

Published: July 2023

Water pollution has jeopardized human health, and a safe supply of drinking water has been recognized as a worldwide issue. The increase in the accumulation of heavy metals in water from different sources has led to the search for efficient and environmentally friendly treatment methods and materials for their removal. Natural zeolites are promising materials for removing heavy metals from different sources contaminating the water. It is important to know the structure, chemistry, and performance of the removal of heavy metals from water, of the natural zeolites to design water treatment processes. This review focuses on critical analyses of the application of distinct natural zeolites for the adsorption of heavy metals from water, specifically, arsenic (As(III), As(V)), cadmium (Cd(II)), chromium (Cr(III), Cr(VI)), lead (Pb(II)), mercury(Hg(II)) and nickel (Ni(II)). The reported results of heavy-metal removal by natural zeolites are summarized, and the chemical modification of natural zeolites by acid/base/salt reagent, surfactants, and metallic reagents has been analyzed, compared, and described. Furthermore, the adsorption/desorption capacity, systems, operating parameters, isotherms, and kinetics for natural zeolites were described and compared. According to the analysis, clinoptilolite is the most applied natural zeolite to remove heavy metals. It is effective in removing As, Cd, Cr, Pb, Hg, and Ni. Additionally, an interesting fact is a variation between the natural zeolites from different geological origins regarding the sorption properties and capacities for heavy metals suggesting that natural zeolites from different regions of the world are unique.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138508DOI Listing

Publication Analysis

Top Keywords

natural zeolites
36
heavy metals
28
metals water
12
natural
10
zeolites
9
adsorption heavy
8
removal natural
8
metals
7
water
7
heavy
6

Similar Publications

A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.

View Article and Find Full Text PDF

The pervasive presence of toluene in aquatic environments, primarily due to oil spills and industrial effluents, necessitates the development of effective and sustainable remediation strategies. This study introduces ZIF-8@DES-treated loofah sponge (ZIF-8@DLS), a novel adsorbent composite material, synthesized via an in situ process that integrates the high surface area of ZIF-8 with the natural loofah sponge. The composite was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), confirming the successful loading of ZIF-8 onto the loofah substrate.

View Article and Find Full Text PDF

Polysaccharides-Directed Biomineralization of Enzymes in Hierarchical Zeolite Imidazolate Frameworks for Electrochemical Detection of Phenols.

ACS Appl Mater Interfaces

January 2025

Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong China.

Biomineralization of enzymes inside rigid metal-organic frameworks (MOFs) is appealing due to its biocompatibility and simplicity. However, this strategy has hitherto been limited to microporous MOFs, leading to low apparent enzymatic activity. In this study, polysaccharide sodium alginate is introduced during the biomineralization of enzymes in zeolitic imidazolate frameworks (ZIFs) to competitively coordinate with metal ions, which endows the encapsulated enzyme with a 7-fold higher activity than that in microporous ZIFs.

View Article and Find Full Text PDF

Synthesis of zeolite from rice husk ash and kaolinite clay for the removal of methylene blue from aqueous solution.

Heliyon

January 2025

Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.

Zeolite was successfully synthesized using a mixture of kaolinite clay (which served as the alumina source) and rice husk ash (silica source). The aim of this work was to synthesize highly efficient zelolite to remove methyle blue dye from aqueous solution. The synthesized adsorbent was characterised using Fourier Transform Infrared (FTIR) spectroscopy, powder x-ray diffraction (PXRD) analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and pH at the point of zero charge (pHpzc).

View Article and Find Full Text PDF

A complementary experimental and computational study on methanol adsorption isotherms of H-ZSM-5.

Phys Chem Chem Phys

January 2025

UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, OX11 0FA, UK.

Methanol adsorption isotherms of fresh f-ZSM-5 and steamed s-ZSM-5 (Si/Al ≈ 40) are investigated experimentally at room temperature under equilibrium and by grand canonical Monte Carlo (GCMC) simulations with the aim of understanding the adsorption capacity, geometry and sites as a function of steam treatment (at 573 K for 24 h). Methanol adsorption energies calculated by GCMC are complemented by density functional theory (DFT) employing both periodic and quantum mechanics/molecular mechanics (QM/MM) techniques. Physical and textural properties of f-ZSM-5 and s-ZSM-5 are characterised by diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) and N-physisorption, which form a basis to construct models for f-ZSM-5 and s-ZSM-5 to simulate methanol adsorption isotherms by GCMC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!