The solid electrolyte interphase (SEI) on a Si negative electrode in carbonate-based organic electrolytes shows intrinsically poor passivating behavior, giving rise to unsatisfactory calendar life of Li-ion batteries. Moreover, mechanical strains induced in the SEI due to large volume changes of Si during charge-discharge cycling could contribute to its mechanical instability and poor passivating behavior. This study elucidates the influence that static mechanical deformation of the SEI has on the rate of unwanted parasitic reactions at the Si/electrolyte interface as a function of electrode potential. The experimental approach involves the utilization of Si thin-film electrodes on substrates with disparate elastic moduli, which either permit or suppress the SEI deformation in response to Si volume changes upon charging-discharging. We find that static mechanical stretching and deformation of the SEI results in an increased parasitic electrolyte reduction current on Si. Furthermore, attenuated total reflection and near-field Fourier-transform infrared nanospectroscopy reveal that the static mechanical stretching and deformation of the SEI fosters a selective transport of linear carbonate solvent through, and nanoconfinement within, the SEI. These, in turn, promote selective solvent reduction and continuous electrolyte decomposition on Si electrodes, reducing the calendar life of Si anode-based Li-ion batteries. Finally, possible correlations between the structure and chemical composition of the SEI layer and its mechanical and chemical resilience under prolonged mechanical deformation are discussed in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c00724 | DOI Listing |
Comput Methods Programs Biomed
January 2025
Department of Mechanics & Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park / Yibin Istitute of Industrial Technology, Yibin 644000, China. Electronic address:
Objectives: As is well known, plaque morphology plays an important role in the hemodynamics of stenotic coronary arteries, thus their clinic outcomes. However, so far, there has been no research on how the cross-sectional shape of a stenotic lumen affects its hemodynamics. Therefore, this study aims to explore the impact of plaque cross-sectional shape on coronary hemodynamics under mild or moderate stenosis conditions (diameter stenosis degree ≤50 %).
View Article and Find Full Text PDFJ Biomech Eng
January 2025
Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, USA.
Frequency-domain analysis of brain tissue motion has received increased focus in recent years as an approach to describing the response of the brain to impact or vibration sources in the built environment. While researchers in many experimental and numerical studies have sought to identify natural resonant frequencies of the brain, limited description of the associated vibration modes limits comparison of results between studies. We performed a modal analysis to extract the natural frequencies and associated mode shapes of a finite element model of the head.
View Article and Find Full Text PDFScientificWorldJournal
January 2025
Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq.
While polyethylene terephthalate glycol (PETG) is widely used in orthodontic appliances such as clear aligners and retainers, there is limited experimental data assessing its performance under functional stresses, such as those encountered during dental movements and palatal expansion. This study aims to evaluate the ability of PETG thermoplastic material to withstand deformation under functional and expansion forces, specifically within the context of orthodontic applications. To estimate the firmness of the screw within the appliance, a universal Instron testing machine was used to record the forces released by each activation of the expander within the upper part of 10 clear modified twin blocks (MTBs) made from PETG and compare it with that released by 10 conventional twin blocks (CTBs).
View Article and Find Full Text PDFAdv Model Simul Eng Sci
January 2025
Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zürich, 8092 Switzerland.
We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations.
View Article and Find Full Text PDFCureus
December 2024
Department of Pediatrics, Japanese Red Cross Wakayama Medical Center, Wakayama, JPN.
Acute ischemic stroke, a medical emergency caused by reduced cerebral blood flow, results in brain cell damage. While commonly associated with older individuals, strokes can also occur in young and middle-aged adults, posing significant socio-economic and health challenges due to the long-term impact of the condition. This poses significant socio-economic and health challenges because stroke is a leading cause of disability and mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!