One model fits all: Combining inference and simulation of gene regulatory networks.

PLoS Comput Biol

Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Lyon, France.

Published: March 2023

The rise of single-cell data highlights the need for a nondeterministic view of gene expression, while offering new opportunities regarding gene regulatory network inference. We recently introduced two strategies that specifically exploit time-course data, where single-cell profiling is performed after a stimulus: HARISSA, a mechanistic network model with a highly efficient simulation procedure, and CARDAMOM, a scalable inference method seen as model calibration. Here, we combine the two approaches and show that the same model driven by transcriptional bursting can be used simultaneously as an inference tool, to reconstruct biologically relevant networks, and as a simulation tool, to generate realistic transcriptional profiles emerging from gene interactions. We verify that CARDAMOM quantitatively reconstructs causal links when the data is simulated from HARISSA, and demonstrate its performance on experimental data collected on in vitro differentiating mouse embryonic stem cells. Overall, this integrated strategy largely overcomes the limitations of disconnected inference and simulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079230PMC
http://dx.doi.org/10.1371/journal.pcbi.1010962DOI Listing

Publication Analysis

Top Keywords

inference simulation
8
gene regulatory
8
inference
5
model
4
model fits
4
fits combining
4
combining inference
4
simulation
4
gene
4
simulation gene
4

Similar Publications

This study seeks to improve urban supply chain management and collaborative governance in the context of public health emergencies (PHEs) by integrating fuzzy theory with the Back Propagation Neural Network (BPNN) algorithm. By combining these two approaches, an early warning mechanism for supply chain risks during PHEs is developed. The study employs Matlab software to simulate supply chain risks, incorporating fuzzy inference techniques with the adaptive data modeling capabilities of neural networks for both training and testing.

View Article and Find Full Text PDF

The article is motivated by an application to the EarlyBird cohort study aiming to explore how anthropometrics and clinical and metabolic processes are associated with obesity and glucose control during childhood. There is interest in inferring the relationship between dynamically changing and high-dimensional metabolites and a longitudinal response. Important aspects of the analysis include the selection of the important set of metabolites and the accommodation of missing data in both response and covariate values.

View Article and Find Full Text PDF

The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).

View Article and Find Full Text PDF

Background: In causal analyses, some third factor may distort the relationship between the exposure and the outcome variables under study, which gives spurious results. In this case, treatment groups and control groups that receive and do not receive the exposure are different from one another in some other essential variables, called confounders.

Method: Place of birth was used as exposure variable and age-specific childhood vaccination status was used as outcome variables.

View Article and Find Full Text PDF

Purpose: To evaluate the accuracy, comprehensiveness, empathetic tone, and patient preference for AI and urologist responses to patient messages concerning common BPH questions across phases of care.

Methods: Cross-sectional study evaluating responses to 20 BPH-related questions generated by 2 AI chatbots and 4 urologists in a simulated clinical messaging environment without direct patient interaction. Accuracy, completeness, and empathetic tone of responses assessed by experts using Likert scales, and preferences and perceptions of authorship (chatbot vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!