In this work, a novel sensing structure based on Au nanoparticles/HfO2/fully depleted silicon-on-insulator (AuNPs/HfO2/FDSOI) MOSFET is fabricated. Using such a planar double gate MOSFET, the electrostatic enrichment (ESE) process is proposed for the ultrasensitive and rapid detection of the coronavirus disease 2019 (COVID-19) ORF1ab gene. The back-gate (BG) bias can induce the required electric field that enables the ESE process in the testing liquid analyte with indirect contact with the top-Si layer. It is revealed that the ESE process can rapidly and effectively accumulate ORF1ab genes close to the HfO2 surface, which can significantly change the MOSFET threshold voltage ([Formula: see text]). The proposed MOSFET successfully demonstrates the detection of zeptomole (zM) COVID-19 ORF1ab gene with an ultralow detection limit down to 67 zM (~0.04 copy/[Formula: see text]) for a test time of less than 15 min even in a high ionic-strength solution. Besides, the quantitative dependence of [Formula: see text] variation on COVID-19 ORF1ab gene concentration from 200 zM to 100 femtomole is also revealed, which is further confirmed by TCAD simulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009805 | PMC |
http://dx.doi.org/10.1109/TED.2022.3233544 | DOI Listing |
Environ Sci Ecotechnol
January 2025
CRETUS, Department of Chemical Engineering. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
The valorization of sewage sludge and food waste to produce energy and fertilizers is a well-stablished strategy within the circular economy. Despite the success of numerous laboratory-scale experiments in converting waste into high-value products such as volatile fatty acids (VFAs), large-scale implementation remains limited due to various technical and environmental challenges. Here, we evaluate the environmental performance of a hypothetical large-scale VFAs biorefinery located in Galicia, Spain, which integrates fermentation and purification processes to obtain commercial-grade VFAs based on primary data from pilot plant operations.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Systems Biotechnology Group, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.
Biophotovoltaics (BPV) represents an innovative biohybrid technology that couples electrochemistry with oxygenic photosynthetic microbes to harness solar energy and convert it into electricity. Central to BPV systems is the ability of microbes to perform extracellular electron transfer (EET), utilizing an anode as an external electron sink. This process simultaneously serves as an electron sink and enhances the efficiency of water photolysis compared to conventional electrochemical water splitting.
View Article and Find Full Text PDFSeizure
January 2025
Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
Purpose: Compare the identification of patients with established status epilepticus (ESE) and refractory status epilepticus (RSE) in electronic health records (EHR) using human review versus natural language processing (NLP) assisted review.
Methods: We reviewed EHRs of patients aged 1 month to 21 years from Boston Children's Hospital (BCH). We included all patients with convulsive ESE or RSE during admission.
Sensors (Basel)
December 2024
Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
Cutaneous leishmaniasis is a parasitic disease that poses significant diagnostic challenges due to the variability of results and reliance on operator expertise. This study addresses the development of a system based on machine learning algorithms to detect spp. parasite in direct smear microscopy images, contributing to the diagnosis of cutaneous leishmaniasis.
View Article and Find Full Text PDFSci Rep
December 2024
Academy of Future Education, Xi'an Jiaotong-Liverpool University, Soochow, China.
Despite the rapid development of entrepreneurship education among college students, limited research has examined the hindering role of Chinese parents in this process under the socio-cultural context of China. To address this gap, a quantitative study was conducted to investigate how entrepreneurship education enhances college students' entrepreneurial self-efficacy (ESE) and the impact of Chinese parental psychological control (PPC). Data were collected from 1,411 college students using structured questionnaires and analyzed using hierarchical regression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!