In this work, a novel sensing structure based on Au nanoparticles/HfO2/fully depleted silicon-on-insulator (AuNPs/HfO2/FDSOI) MOSFET is fabricated. Using such a planar double gate MOSFET, the electrostatic enrichment (ESE) process is proposed for the ultrasensitive and rapid detection of the coronavirus disease 2019 (COVID-19) ORF1ab gene. The back-gate (BG) bias can induce the required electric field that enables the ESE process in the testing liquid analyte with indirect contact with the top-Si layer. It is revealed that the ESE process can rapidly and effectively accumulate ORF1ab genes close to the HfO2 surface, which can significantly change the MOSFET threshold voltage ([Formula: see text]). The proposed MOSFET successfully demonstrates the detection of zeptomole (zM) COVID-19 ORF1ab gene with an ultralow detection limit down to 67 zM (~0.04 copy/[Formula: see text]) for a test time of less than 15 min even in a high ionic-strength solution. Besides, the quantitative dependence of [Formula: see text] variation on COVID-19 ORF1ab gene concentration from 200 zM to 100 femtomole is also revealed, which is further confirmed by TCAD simulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009805PMC
http://dx.doi.org/10.1109/TED.2022.3233544DOI Listing

Publication Analysis

Top Keywords

ese process
12
covid-19 orf1ab
12
orf1ab gene
12
depleted silicon-on-insulator
8
rapid detection
8
detection zeptomole
8
zeptomole covid-19
8
electrostatic enrichment
8
[formula text]
8
mosfet
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!