Targeted Small Molecules for Systemic Lupus Erythematosus: Drugs in the Pipeline.

Drugs

Department of Medicine, Tuen Mun Hospital, Tsing Chung Koon Road, New Territories, Hong Kong SAR, China.

Published: April 2023

Despite the uncertainty of the pathogenesis of systemic lupus erythematosus, novel small molecules targeting specific intracellular mechanisms of immune cells are being developed to reverse the pathophysiological processes. These targeted molecules have the advantages of convenient administration, lower production costs, and the lack of immunogenicity. The Janus kinases, Bruton's tyrosine kinases, and spleen tyrosine kinases are important enzymes for activating downstream signals from various receptors on immune cells that include cytokines, growth factor, hormones, Fc, CD40, and B-cell receptors. Suppression of these kinases impairs cellular activation, differentiation, and survival, leading to diminished cytokine actions and autoantibody secretion. Intracellular protein degradation by immunoproteasomes, levered by the cereblon E3 ubiquitin ligase complex, is an essential process for the regulation of cellular functions and survival. Modulation of the immunoproteasomes and cereblon leads to depletion of long-lived plasma cells, reduced plasmablast differentiation, and production of autoantibodies and interferon-α. The sphingosine 1-phosphate/sphingosine 1-phosphate receptor-1 pathway is responsible for lymphocyte trafficking, regulatory T-cell/Th17 cell homeostasis, and vascular permeability. Sphingosine 1-phosphate receptor-1 modulators limit the trafficking of autoreactive lymphocytes across the blood-brain barrier, increase regulatory T-cell function, and decrease production of autoantibodies and type I interferons. This article summarizes the development of these targeted small molecules in the treatment of systemic lupus erythematosus, and the future prospect for precision medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042116PMC
http://dx.doi.org/10.1007/s40265-023-01856-xDOI Listing

Publication Analysis

Top Keywords

small molecules
12
systemic lupus
12
lupus erythematosus
12
targeted small
8
immune cells
8
tyrosine kinases
8
production autoantibodies
8
1-phosphate receptor-1
8
molecules
4
molecules systemic
4

Similar Publications

A review of the roles of exosomes in salivary gland diseases with an emphasis on primary Sjögren's syndrome.

J Dent Sci

January 2025

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Salivary gland diseases encompass a broad range of conditions, including autoimmune, inflammatory, obstructive, and neoplastic disorders, significantly impacting oral health and overall well-being. Recent research has highlighted the crucial role of exosomes, small extracellular vesicles, in these diseases. Exosomes mediate intercellular communication by transferring bioactive molecules such as proteins, microRNAs, and lipids, positioning them as potential diagnostic biomarkers and therapeutic agents.

View Article and Find Full Text PDF

Vitamin C derivative/AA2P promotes erythroid differentiation by upregulating .

Life Med

October 2023

Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China.

Vitamin C is used to treat anaemia; however, the mechanism through which vitamin C promotes erythroid differentiation is not comprehensively understood. The erythroid differentiation induction system can reveal the differentiation mechanism and provide erythrocytes for clinical transfusion and anaemia treatment. This process can be promoted by adding small-molecule compounds.

View Article and Find Full Text PDF

Consolidation with PD-1/PD-L1-based immune checkpoint blockade after concurrent platinum-based chemo-radiotherapy has become the new standard of care for advanced stage III unresectable non-small cell lung cancer (NSCLC) patients. In order to further improve therapy outcomes, innovative combinatorial treatment strategies aim to target additional immunosuppressive barriers in the tumor microenvironment such as the CD73/adenosine pathway. CD73 and adenosine are known as crucial endogenous regulators of lung homeostasis and inflammation, but also contribute to an immunosuppressive tumor microenvironment.

View Article and Find Full Text PDF

Small-molecule activation of NAMPT as a potential neuroprotective strategy.

Life Med

December 2022

School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channels expressed in nervous and non-nervous system tissue important for memory, movement, and sensory processes. The pharmacological targeting of nAChRs, using small molecules or peptides, is a promising approach for the development of compounds for the treatment of various human diseases including inflammatory and neurogenerative disorders such as Alzheimer's disease. Using the acetylcholine binding protein (Ac-AChBP) as an established structural surrogate for human homopentameric α7 nAChRs, we describe an innovative protein painting mass spectrometry (MS) method that can be used to identify interaction sites for various ligands at the extracellular nAChR site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!