Novel Antimicrobial Peptide SAAP Mutant as a Better Adjuvant to Sulbactam-Based Treatments Against Clinical Strains of XDR Acinetobacter baumannii.

Probiotics Antimicrob Proteins

Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India.

Published: April 2024

The production of extended spectrum β-lactamases (ESBLs) in extensively drug-resistant (XDR) strains of Acinetobacter baumannii has created havoc amongst clinicians making the treatment procedure challenging. Carbapenem-resistant strains have displayed total ineffectiveness towards newer combinations of β-lactam-β-lactamase inhibitors (βL-βLI) in tertiary healthcare settings. Therefore, the present study was aimed to design potential β-lactamase antimicrobial peptide (AMP) inhibitors against ESBLs produced by the strains. We have constructed an AMP mutant library with higher antimicrobial efficacy (range: ~ 15 to 27%) than their parent peptides. The mutants were thoroughly screened based on different physicochemical and immunogenic properties revealing three peptides, namely SAAP-148, HFIAP-1, myticalin-C6 and their mutants with safe pharmacokinetics profile. Molecular docking highlighted SAAP-148_M15 displaying maximum inhibitory potential with lowest binding energies against NDM1 (- 1148.7 kcal/mol), followed by OXA23 (- 1032.5 kcal/mol) and OXA58 (- 925.3 kcal/mol). The intermolecular interaction profiles displayed SAAP-148_M15 exhibiting hydrogen bonds and van der Waals hydrophobic interactions with the crucial residues of metallo β-lactamase [IPR001279] and penicillin-binding transpeptidase [IPR001460] domains. Coarse-grained clustering and molecular dynamics simulations (MDS) further validated the stable backbone profile and minimal residue-level fluctuations of the protein-peptide complex that were maintained throughout the simulation timeframe. The present study hypothesised that the combination of sulbactam (βL) with SAAP-148_M15 (βLI) holds immense potential in inhibiting the ESBLs alongside restoration of sulbactam activity. The current in silico findings upon further experimental validations can pave path towards designing of successful therapeutic strategy against XDR strains of A. baumannii.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12602-023-10067-5DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptide
8
acinetobacter baumannii
8
xdr strains
8
strains
5
novel antimicrobial
4
peptide saap
4
saap mutant
4
mutant better
4
better adjuvant
4
adjuvant sulbactam-based
4

Similar Publications

Although an ongoing understanding of psoriasis vulgaris (PV) pathogenesis, little is known about the proteomic differences between moderate and severe psoriasis. In this cross-sectional study, we evaluated the proteomic differences between moderate and severe psoriasis using data-independent acquisition mass spectrometry (DIA-MS). 173 differentially expressed proteins (DEPs) were significantly differentially expressed between the two groups.

View Article and Find Full Text PDF

Unbiased picture of the ligand docking process for the hevein protein-oligosaccharide complex.

Sci Rep

January 2025

Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Nishi, Gakuen-Kibanadai, Miyazaki, 889-2192, Japan.

The ligand-docking behavior of hevein, the major latex protein from the rubber tree Hevea brasiliensis (Euphorbiaceae), has been investigated by the unguided molecular dynamics (MD) simulation method. An oligosaccharide molecule, initially placed in an arbitrary position, was allowed to move around hevein for a prolonged simulation time, on the order of microseconds, with the expectation of spontaneous ligand docking of the oligosaccharide molecule to the binding site of hevein. In the binary solution system consisting of a hevein molecule and a chito-trisaccharide (GlcNAc) molecule, three out of the six separate simulation runs successfully reproduced the complex structure of the observed binding from.

View Article and Find Full Text PDF

Oral Tributyrin Treatment affects Short-Chain Fatty Acid Transport, Mucosal Health, and Microbiome in a Mouse Model of Inflammatory Diarrhea.

J Nutr Biochem

January 2025

Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany. Electronic address:

Butyrate may decrease intestinal inflammation and diarrhea. This study investigates the impact of oral application of sodium butyrate (NaB) and tributyrin (TB) on colonic butyrate concentration, SCFA transporter expression, colonic absorptive function, barrier properties, inflammation, and microbial composition in the colon of slc26a3 mice, a mouse model for inflammatory diarrhea. In vivo fluid absorption and bicarbonate secretory rates were evaluated in the cecum and mid-colon of slc26a3 and slc26a3 mice before and during luminal perfusion of NaB-containing saline and were significantly stimulated in both slc26a3 and slc26a3 colon by NaB.

View Article and Find Full Text PDF

The Japanese encephalitis virus NS1' protein facilitates virus infection in mosquitoes.

PLoS Negl Trop Dis

January 2025

Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.

Background: The Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is known for its capacity to cause severe neurological disease in Asia. Neurotropic flaviviruses within the Japanese encephalitis (JE) serogroup possess the distinctive feature of expressing a unique nonstructural protein, NS1'. The NS1' protein consists of the full NS1 protein with an additional 52 amino acid extension at the C-terminus and has been demonstrated to exhibit virulence in mammalian hosts upon infection.

View Article and Find Full Text PDF

An introduction to antibacterial materials in composite restorations.

JADA Found Sci

October 2024

Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR.

The longevity of direct esthetic restorations is severely compromised because of, among other things, a loss of function that comes from their susceptibility to biofilm-mediated secondary caries, with being the most prevalent associated pathogen. Strategies to combat biofilms range from dental compounds that can disrupt multispecies biofilms in the oral cavity to approaches that specifically target caries-causing bacteria such as . One strategy is to include those antibacterial compounds directly in the material so they can be available long-term in the oral cavity and localized at the margin of the restorations, in which many of the failures initiate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!