PMA (propidium monoazide) is one of the few methods that are compatible with metagenomic sequencing to characterize the live/intact microbiota. However, its efficiency in complex communities such as saliva and feces is still controversial. An effective method for depleting host and dead bacterial DNA in human microbiome samples is lacking. Here, we systematically evaluate the efficiency of osmotic lysis and PMAxx treatment (lyPMAxx) in characterizing the viable microbiome with four live/dead Gram+/Gram- microbial strains in simple synthetic and spiked-in complex communities. We show that lyPMAxx-quantitative PCR (qPCR)/sequencing eliminated more than 95% of the host and heat-killed microbial DNA and had a much smaller effect on the live microbes in both simple mock and spiked-in complex communities. The overall microbial load and the alpha diversity of the salivary and fecal microbiome were decreased by lyPMAxx, and the relative abundances of the microbes were changed. The relative abundances of , , and in saliva were decreased by lyPMAxx, as was that of in feces. We also found that the frequently used sample storage method, freezing with glycerol, killed or injured 65% and 94% of the living microbial cells in saliva and feces, respectively, with the phylum affected most in saliva and the and phyla affected most in feces. By comparing the absolute abundance variation of the shared species among different sample types and individuals, we found that sample habitat and personal differences affected the response of microbial species to lyPMAxx and freezing. The functions and phenotypes of microbial communities are largely defined by viable microbes. Through advanced nucleic acid sequencing technologies and downstream bioinformatic analyses, we gained an insight into the high-resolution microbial community composition of human saliva and feces, yet we know very little about whether such community DNA sequences represent viable microbes. PMA-qPCR was used to characterize the viable microbes in previous studies. However, its efficiency in complex communities such as saliva and feces is still controversial. By spiking-in four live/dead Gram+/Gram- bacterial strains, we demonstrate that lyPMAxx can effectively discriminate between live and dead microbes in the simple synthetic community and complex human microbial communities (saliva and feces). In addition, freezing storage was found to kill or injure the microbes in saliva and feces significantly, as measured with lyPMAxx-qPCR/sequencing. This method has a promising prospect in the viable/intact microbiota detection of complex human microbial communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134872 | PMC |
http://dx.doi.org/10.1128/msystems.00738-22 | DOI Listing |
BMC Microbiol
January 2025
School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
Background And Aims Of The Study: Fluctuations in environmental temperature and humidity significantly affect human physiology and disease manifestation. In the Lingnan region of China, high summer temperatures and humidity often cause symptoms like diminished appetite, sticky tongue coating, sticky stool, unsatisfactory defecation, lethargy, and joint heaviness. These are referred to as "Dampness Syndrome" in Traditional Chinese Medicine (TCM).
View Article and Find Full Text PDFSci Rep
January 2025
Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, GB, United Kingdom.
SARS-CoV-2 is the viral pathogen responsible for COVID-19. Although morbidity and mortality frequently occur as a result of lung disease, the gastrointestinal (GI) tract is recognized as a primary location for SARS-CoV-2. Connections and interactions between the microbiome of the gut and respiratory system have been linked with viral infections via what has been referred to as the 'gut-lung axis' with potential aerodigestive communication in health and disease.
View Article and Find Full Text PDFSci Adv
January 2025
Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074 Aachen, Germany.
The oral-gut axis is a complex system linking the oral cavity and gastrointestinal tract, impacting host health and microbial composition. This study investigates genetic changes and adaptive mechanisms employed by streptococci-one of the few genera capable of colonizing oral and intestinal niches-within the same individual. We conducted whole-genome sequencing (WGS) on 218 streptococcal isolates from saliva and fecal samples of 14 inflammatory bowel disease (IBD) patients and 12 healthy controls.
View Article and Find Full Text PDFBiomolecules
December 2024
Institute of Biomedical Chemistry, 109028 Moscow, Russia.
Metabolomics investigates final and intermediate metabolic products in cells. Assessment of the human metabolome relies principally on the analysis of blood, urine, saliva, sweat, and feces. Tissue biopsy is employed less frequently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!