Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Vaccinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have had a transformative impact on morbidity and mortality. However, the long-term impact of vaccination on patients with genitourinary cancers is currently unknown.
Materials And Methods: This study aimed to assess seroconversion rates in patients with genitourinary cancers receiving COVID-19 vaccination. Patients with prostate cancer, renal cell carcinoma, or urothelial cancer who had not been vaccinated for COVID-19 were included. Blood samples were obtained at baseline and after 2, 6, and 12 months of one dose of an FDA-approved COVID-19 vaccine. Antibody titer analysis was performed using the SCoV-2 Detect IgG ELISA assay, and the results were reported as immune status ratio (ISR). A paired t-test was used for comparison of ISR values between timepoints. In addition, T-cell receptor (TCR) sequencing was performed to assess for differences in TCR repertoire 2 months after vaccination.
Results: Out of 133 patients enrolled, 98 baseline blood samples were collected. At 2-, 6-, and 12-month time points 98, 70, and 50 samples were collected, respectively. Median age was 67 (IQR, 62-75), with the majority of patients diagnosed with prostate (55.1%) or renal cell carcinoma (41.8%). Compared to baseline (0.24 [95% CI, 0.19-0.31]) a significant increase in the geometric mean ISR values was observed at the 2-month timepoint (5.59 [4.76-6.55]) (P < .001). However, at the 6-month timepoint, a significant decrease in the ISR values was observed (4.66 [95% CI, 4.04-5.38]; P < .0001). Notably, at the 12-month timepoint, the addition of a booster dose resulted in an absolute increase in the ISR values compared to those who did not receive a booster dose (P = .04).
Conclusions: Only a minority of patients with genitourinary cancers did not ultimately achieve satisfactory seroconversion after receiving commercial COVID-19 vaccination. Cancer type or treatment rendered did not appear to affect the immune response mounted after vaccination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485287 | PMC |
http://dx.doi.org/10.1093/oncolo/oyad067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!