A Biomass-Based Colorimetric Sulfur Dioxide Gas Sensor for Smart Packaging.

ACS Nano

College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.

Published: April 2023

Sulfur dioxide (SO) gas, which can effectively prohibit the growth of pathogenic microorganisms, has been internationally used in commercial food packaging to maintain high-quality food and reduce the incidence of foodborne illnesses. However, the current mainstream methods for SO detection are either large and expensive instruments or synthesized chemical-based labels, which are not suitable for large-scale gas detection in food packaging. Recently, we discovered that petunia dye (PD), which is extracted from natural petunia flowers, demonstrates a highly sensitive colorimetric response to SO gas with its total color difference (Δ) modulation reaching up to 74.8 and detection limit down to 1.52 ppm. To apply the extracted petunia dye in smart packaging for real-time gas sensing and food-quality prediction, a flexible and freestanding PD-based SO detection label is prepared by incorporating PD in biopolymers and assembling the films through a layer-by-layer approach. The developed label is utilized to predict grapes' quality and safety by monitoring the embedded SO gas concentration. The developed colorimetric SO detection label could potentially be used as an intelligent gas sensor for food status prediction in daily life, food storage, and supply chains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c00530DOI Listing

Publication Analysis

Top Keywords

sulfur dioxide
8
dioxide gas
8
gas sensor
8
smart packaging
8
food packaging
8
petunia dye
8
detection label
8
gas
7
food
5
detection
5

Similar Publications

An Activatable Chemiluminescent Self-Reporting Sulfur Dioxide Donor for Inflammatory Response and Regulation of Gaseous Vasodilation.

ACS Sens

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Sulfur dioxide (SO), being a novel gaseous signaling molecule, exhibits significant potential for application in the field of cardiovascular diseases. SO donors serve as crucial tools for the transportation and regulation of SO in vivo, facilitating the investigation of physiological roles associated with this molecule. However, the current therapeutic SO donors lack the capability to monitor the real-time release of SO, thereby hindering accurate assessment of their therapeutic efficacy and target localization.

View Article and Find Full Text PDF

Sulfur Dioxide Alleviates Aortic Dissection Through Inhibiting Vascular Smooth Muscle Cell Phenotype Switch, Migration, and Proliferation miR-184-3p/Cyp26b1 Axis.

Antioxid Redox Signal

January 2025

Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), The First Affiliated Hospital, Sun Yat Sen University, Guangzhou, China.

Abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are considered early events in the onset of thoracic aortic dissection (TAD). Endogenous sulfur dioxide (SO), primarily produced by aspartate aminotransferase (AAT1) in mammals, has been reported to inhibit the migration and proliferation of VSMCs. However, the role of SO in the development of TAD remains unclear.

View Article and Find Full Text PDF

The maritime transport sector poses significant air quality concerns, particularly in nearby cities. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential health impacts. This study measured particle number concentrations (PNC), size distributions (PNSD), and other pollutants including particulate matter (PM), nitrogen oxides (NO), black carbon (BC), sulfur dioxide (SO) and ozone (O), organic markers and trace elements at a major European harbor and an urban background (UB) location.

View Article and Find Full Text PDF

Effects of Atmospheric Pollutants on Volatile-Mediated Insect Ecosystem Services.

Glob Chang Biol

January 2025

Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.

Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.

View Article and Find Full Text PDF

SO derivatives impair ovarian function by inhibiting Serpine1/NF-κB pathway-mediated ovarian granulosa cell survival.

J Hazard Mater

January 2025

Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China. Electronic address:

Sulfur dioxide (SO) is a contributor to air pollution. Human evidence has demonstrated an association between SO exposure and diminished ovarian reserve. The toxicity of SO is mainly attributed to its derivatives, bisulfite and sulfite, which have a variety of adverse effects on both human health and the environment, yet have been widely used as additives in food processing and transportation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!