Computational analysis of bio-images by deep learning (DL) algorithms has made exceptional progress in recent years and has become much more accessible to non-specialists with the development of ready-to-use tools. The study of oogenesis mechanisms and female reproductive success has also recently benefited from the development of efficient protocols for three-dimensional (3D) imaging of ovaries. Such datasets have a great potential for generating new quantitative data but are, however, complex to analyze due to the lack of efficient workflows for 3D image analysis. Here, we have integrated two existing open-source DL tools, Noise2Void and Cellpose, into an analysis pipeline dedicated to 3D follicular content analysis, which is available on Fiji. Our pipeline was developed on larvae and adult medaka ovaries but was also successfully applied to different types of ovaries (trout, zebrafish and mouse). Image enhancement, Cellpose segmentation and post-processing of labels enabled automatic and accurate quantification of these 3D images, which exhibited irregular fluorescent staining, low autofluorescence signal or heterogeneous follicles sizes. In the future, this pipeline will be useful for extensive cellular phenotyping in fish or mammals for developmental or toxicology studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.201185 | DOI Listing |
Invest Radiol
October 2024
From the Department of Radiology and Nuclear Medicine, UKSH Lübeck, Lübeck, Germany (J.S., M.M., L.B., Y.E., J.B., M.M.S.); Institute of Medical Informatics, University of Lübeck, Lübeck, Germany (L.H., M.P.H.); Philips Research Hamburg, Hamburg, Germany (A.S., H.S.); and Institute of Interventional Radiology, UKSH Lübeck, Lübeck, Germany (M.M.S.).
Purpose: Accurate detection of central venous catheter (CVC) misplacement is crucial for patient safety and effective treatment. Existing artificial intelligence (AI) often grapple with the limitations of label inaccuracies and output interpretations that lack clinician-friendly comprehensibility. This study aims to introduce an approach that employs segmentation of support material and anatomy to enhance the precision and comprehensibility of CVC misplacement detection.
View Article and Find Full Text PDFInt J Surg
October 2024
Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
Objective: To develop a model for accurate prediction of axillary lymph node (LN) status after neoadjuvant chemotherapy (NAC) in breast cancer patients with nodal involvement.
Methods: Between October 2018 and February 2024, 671 breast cancer patients with biopsy-proven LN metastasis who received NAC followed by axillary LN dissection were enrolled in this prospective, multicenter study. Preoperative ultrasound (US) images, including B-mode ultrasound (BUS) and shear wave elastography (SWE), were obtained.
J Chem Inf Model
December 2024
School of Physics, Shandong University, Jinan 250100, China.
In recent years, the deep learning (DL) technique has rapidly developed and shown great success in scoring the protein-ligand binding affinities. The protein-ligand conformation optimization based on DL-derived scoring functions holds broad application prospects, for instance, drug design and enzyme engineering. In this study, we evaluated the robustness of a DL-based ligand conformation optimization protocol (DeepRMSD+Vina) for optimizing structures with input perturbations by examining the predicted ligand binding poses and scoring.
View Article and Find Full Text PDFHum Reprod
December 2024
Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands.
Study Question: How can we best achieve tissue segmentation and cell counting of multichannel-stained endometriosis sections to understand tissue composition?
Summary Answer: A combination of a machine learning-based tissue analysis software for tissue segmentation and a deep learning-based algorithm for segmentation-independent cell identification shows strong performance on the automated histological analysis of endometriosis sections.
What Is Known Already: Endometriosis is characterized by the complex interplay of various cell types and exhibits great variation between patients and endometriosis subtypes.
Study Design, Size, Duration: Endometriosis tissue samples of eight patients of different subtypes were obtained during surgery.
Environ Monit Assess
December 2024
Chongqing Key Laboratory of Non-Linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, 400715, China.
Waste sorting is a key part of sustainable development. To maximize the recovery of resources and reduce labor costs, a waste management and classification system is established. In the system, we use Internet of Things (IoT) and edge computing to implement waste sorting and the systematic long-distance information transmission and monitoring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!