Imprinting magnetism into graphene may lead to unconventional electron states and enable the design of spin logic devices with low power consumption. The ongoing active development of 2D magnets suggests their coupling with graphene to induce spin-dependent properties via proximity effects. In particular, the recent discovery of submonolayer 2D magnets on surfaces of industrial semiconductors provides an opportunity to magnetize graphene coupled with silicon. Here, synthesis and characterization of large-area graphene/Eu/Si(001) heterostructures combining graphene with a submonolayer magnetic superstructure of Eu on silicon are reported. Eu intercalation at the interface of the graphene/Si(001) system results in a Eu superstructure different from those formed on pristine Si in terms of symmetry. The resulting system graphene/Eu/Si(001) exhibits 2D magnetism with the transition temperature controlled by low magnetic fields. Negative magnetoresistance and the anomalous Hall effect in the graphene layer provide evidence for spin polarization of the carriers. Most importantly, the graphene/Eu/Si system seeds a class of graphene heterostructures based on submonolayer magnets aiming at applications in graphene spintronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202301295DOI Listing

Publication Analysis

Top Keywords

graphene
8
coupling graphene
8
graphene submonolayer
8
submonolayer magnets
8
proximity coupling
4
submonolayer
4
submonolayer magnet
4
magnet imprinting
4
imprinting magnetism
4
magnetism graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!