Objective: Coronavirus disease 2019 can spread through aerosols produced by surgical procedures, but knowledge of the extent of aerosol production and the risk posed by many common procedures does not exist. This study analysed aerosol generation during tonsillectomy and how it differs between distinct surgical techniques and instruments. The results can be used in risk assessment during current and future pandemics and epidemics.
Method: An optical particle sizer was used to measure particle concentrations generated during tonsillectomy from the perspectives of the surgeon and other staff. Coughing is commonly used as a reference for high-risk aerosol generation; therefore, coughing and the operating theatre's background concentration were chosen as reference values. Different instruments were also compared to find the safest way to perform the tonsillectomy from the perspective of airborne transmission.
Results: Eighteen tonsillectomies were evaluated; all techniques mostly generated less than 1 μm particles. For the surgeon, bipolar electrocautery significantly exceeded the particle generation of coughing in both total and less than 1 μm particles and was found to produce significantly higher total and less than 1 μm aerosol concentrations than cold dissection and BiZact. No technique exposed other staff to a greater aerosol concentration than is generated by a cough.
Conclusion: Bipolar electrocautery generated high aerosol concentrations during tonsillectomy; cold dissection generated significantly less. The results support cold dissection as the primary tonsillectomy technique, particularly during the epidemics of airborne diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0022215123000324 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!