DNA in cells is organized in negatively supercoiled loops. The resulting torsional and bending strain allows DNA to adopt a surprisingly wide variety of 3-D shapes. This interplay between negative supercoiling, looping, and shape influences how DNA is stored, replicated, transcribed, repaired, and likely every other aspect of DNA activity. To understand the consequences of negative supercoiling and curvature on the hydrodynamic properties of DNA, we submitted 336 bp and 672 bp DNA minicircles to analytical ultracentrifugation (AUC). We found that the diffusion coefficient, sedimentation coefficient, and the DNA hydrodynamic radius strongly depended on circularity, loop length, and degree of negative supercoiling. Because AUC cannot ascertain shape beyond degree of non-globularity, we applied linear elasticity theory to predict DNA shapes, and combined these with hydrodynamic calculations to interpret the AUC data, with reasonable agreement between theory and experiment. These complementary approaches, together with earlier electron cryotomography data, provide a framework for understanding and predicting the effects of supercoiling on the shape and hydrodynamic properties of DNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164573 | PMC |
http://dx.doi.org/10.1093/nar/gkad183 | DOI Listing |
Environ Int
January 2025
Department of Physics, University of Girona, Campus de Montilivi, Girona 17003 Spain.
Using lock-exchange experiments, this study investigates the transport and sedimentation of microplastics (MPs) via turbidity currents. Two hypotheses were tested: MP sedimentation is influenced by suspended sediment concentration and grain size. Utilizing flows with different sediment concentrations and grain sizes in combination with three different MPs (PET fibers, melamine, and PVC fragments), the experiments revealed distinct sedimentation patterns: higher sediment concentrations enhance MP transport, and turbidity currents with finer sediments transported MPs over greater distances, highlighting the importance of sediment characteristics to predict MP distribution by such flows.
View Article and Find Full Text PDFPart Fibre Toxicol
January 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.
Background: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Wagner-Jauregg Weg 15, 4020 Linz and Altenbergerstrasse 69, Linz, 4040, Austria.
Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, J. D. Block, Sec.III, Salt Lake, Kolkata, West Bengal 700 098, India.
We investigated the temperature dependence of the intermolecular dynamics, including intermolecular vibrations and collective orientational relaxation, of one of the most typical deep eutectic solvents, reline, using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), subpicosecond optical Kerr effect spectroscopy (ps-OKES), and molecular dynamics (MD) simulations. According to fs-RIKES results, the temperature-dependent intermolecular vibrational band peak at ∼90 cm exhibited a redshift with increasing temperature. The density-of-state (DOS) spectrum of reline by MD simulations reproduced this fs-RIKES spectral feature.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
Hydrodynamic conditions influenced by river sinuosity may alter carbon (e.g., carbon dioxide and methane) emissions and microbial communities responsible for nutrient turnover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!