Inhibition of Melanosome Transport by Inducing Exon Skipping in Melanophilin.

Biomol Ther (Seoul)

Department of Genetic & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin 17104, Republic of Korea.

Published: July 2023

Exon skipping is an efficient technique to inhibit specific gene expression induced by a short-sequence peptide nucleic acid (PNA). To date, there has been no study on the effects of PNA on skin pigmentation. In melanocytes, the tripartite complex is responsible for the transport of mature melanosomes from the nucleus to the dendrites. The tripartite complex is composed of Rab27a, Mlph (Melanophilin), and Myosin Va. Defects in the protein Mlph, a melanosome transport-related protein, are known to cause hypopigmentation. Our study shows that Olipass peptide nucleic acid (OPNA), a cell membrane-permeable PNA, targets exon skipping in the Mlph SHD domain, which is involved in Rab27a binding. Our findings demonstrate that OPNA induced exon skipping in melan-a cells, resulting in shortened Mlph mRNA, reduced Mlph protein levels, and melanosome aggregation, as observed by microscopy. Therefore, OPNA inhibits the expression of Mlph by inducing exon skipping within the gene. These results suggest that OPNA, which targets Mlph, may be a potential new whitening agent to inhibit melanosome movement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315340PMC
http://dx.doi.org/10.4062/biomolther.2022.167DOI Listing

Publication Analysis

Top Keywords

exon skipping
20
inducing exon
8
peptide nucleic
8
nucleic acid
8
tripartite complex
8
mlph
7
exon
5
skipping
5
inhibition melanosome
4
melanosome transport
4

Similar Publications

With the rapid development of epidermal growth factor receptor (EGFR) gene testing of lung adenocarcinoma patients has been routinely carried out, EGFR mutations are also possible for some small samples of non-smoking female lung squamous cell carcinoma patients. This increases the opportunity for targeted therapy for this group of patients. However, drug resistance in patients with lung squamous cell carcinoma during targeted therapy is an important factor affecting subsequent treatment.

View Article and Find Full Text PDF

[Savolitinib Induced Pathological Complete Response in Non-small Cell Lung Cancer with MET Amplification: A Case Report].

Zhongguo Fei Ai Za Zhi

November 2024

Department of Pulmonary Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300000, China.

Mesenchymal-epithelial transition factor (MET) gene mutation is a large class of mutations commonly seen in non-small cell lung cancer (NSCLC). MET mutation includes subtypes such as MET exon 14 skipping mutation (METex14m) and MET amplification (METamp). For advanced NSCLC with METex14m, Savolitinib has a high sensitivity as a member of tyrosine kinase inhibitors (TKIs).

View Article and Find Full Text PDF

Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity.

Int J Mol Sci

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe muscle disorder caused by mutations in the DMD gene, leading to dystrophin deficiency. Antisense oligonucleotide (ASO)-mediated exon skipping offers potential by partially restoring dystrophin, though current therapies remain mutation specific with limited efficacy. To overcome those limitations, we developed brogidirsen, a dual-targeting ASO composed of two directly connected 12-mer sequences targeting exon 44 using phosphorodiamidate morpholino oligomers.

View Article and Find Full Text PDF

Alternative splicing is essential for the generation of various protein isoforms that are involved in cell differentiation and tissue development. In addition to internal coding exons, alternative splicing affects the exons with translation initiation codons; however, little is known about these exons. Here, we performed a systematic classification of human alternative exons using coding information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!