Background: The aim of a robotic exoskeleton is to match the torque and angular profile of a healthy human subject in performing activities of daily living. Power and mass are the main requirements considered in the robotic exoskeletons that need to be reduced so that portable designs to perform independent activities by the elderly users could be adopted.
Objective: This paper evaluates a systematic approach for the design optimization strategies of elastic elements and implements an actuator design solution for an ideal combination of components of an elastic actuation system while providing the same level of support to the elderly.
Methods: A multi-factor optimization technique was used to determine the optimum stiffness and engagement angle of the spring within its elastic limits at the hip, knee and ankle joints. An actuator design framework was developed for the elderly users to match the torque-angle characteristics of the healthy human with the best motor and transmission system combined with series or parallel elasticity in an elastic actuator.
Results: With the optimized spring stiffness, a parallel elastic element significantly reduced the torque and power requirements up to 90% for some manoeuvres for the users to perform ADL. When compared with the rigid actuation system, the optimized robotic exoskeleton actuation system reduced the power consumption of up to 52% using elastic elements.
Conclusion: A lightweight, smaller design of an elastic actuation system consuming less power as compared to a rigid system was realized using this approach. This will help to reduce the battery size and hence the portability of the system could be better adopted to support elderly users in performing daily living activities. It was established that parallel elastic actuators (PEA) can reduce the torque and power better than series elastic actuators (SEA) in performing everyday tasks for the elderly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/THC-220145 | DOI Listing |
PLoS One
January 2025
Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States of America.
Purpose: This study aims to explore the feasibility and performance of three-dimensional ultrasound (3DUS) imaging in ophthalmology using commercially available ultrasound probes adapted to a slit lamp.
Significance: Despite ultrasound's long-standing application in eye care for visualizing ocular components, the evolution of 3DUS technology has remained inactive, with limited development and commercial availability. This study introduces a novel method that could potentially enhance ophthalmic diagnostics and treatment planning by providing comprehensive 3D views of ocular structures using existing ultrasound probes adapted to the conventional slit lamp.
J Mater Chem B
January 2025
Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA.
Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:
RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.
View Article and Find Full Text PDFRecording and manipulating neuronal ensembles that underlie cognition and behavior is challenging. FLARE is a light- and calcium-gated transcriptional reporting system for labeling activated neurons on the order of minutes. However, FLARE is limited by its sensitivity to prolonged neuronal activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!