The maturation of mRNAs in Trypanosoma brucei involves a novel step, in which a short capped sequence is spliced in trans onto the 5' end of nascent mRNAs from a 140-nucleotide precursor. This precursor is called the mini-exon-derived RNA or medRNA. We have used drugs and ultraviolet irradiation as inhibitors to probe the synthesis and processing of medRNA in vivo. Inhibition of RNA synthesis by chloroquine shows that the half-life of medRNA is about 4 minutes. Despite this high turnover, only limited accumulation of medRNA could be achieved following a block in the synthesis of high molecular weight splice acceptor substrates by UV irradiation. This implies that there is a constraint on the steady-state levels of medRNA and that excess medRNA is degraded in the cell. A 3' shortened version of medRNA accumulates upon a block in normal medRNA processing by UV irradiation or upon treatment of the cells with actinomycin D or novobiocin but was shown not to participate in trans splicing, making it a likely candidate for an in vivo degradation intermediate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC339932PMC
http://dx.doi.org/10.1093/nar/15.24.10087DOI Listing

Publication Analysis

Top Keywords

trans splicing
8
trypanosoma brucei
8
medrna
8
controlled turnover
4
turnover trimming
4
trimming trans
4
splicing precursor
4
precursor trypanosoma
4
brucei maturation
4
maturation mrnas
4

Similar Publications

Alternative splicing in the DBD linker region of p63 modulates binding to DNA and iASPP in vitro.

Cell Death Dis

January 2025

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.

The transcription factor p63 is expressed in many different isoforms as a result of differential promoter use and splicing. Some of these isoforms have very specific physiological functions in the development and maintenance of epithelial tissues and surveillance of genetic integrity in oocytes. The ASPP family of proteins is involved in modulating the transcriptional activity of the p53 protein family members, including p63.

View Article and Find Full Text PDF

Synthetic genetic circuits program the cellular input-output relationships to execute customized functions. However, efforts to scale up these circuits have been hampered by the limited number of reliable regulatory mechanisms with high programmability, performance, predictability and orthogonality. Here we report a class of split-intron-enabled trans-splicing riboregulators (SENTRs) based on de novo designed external guide sequences.

View Article and Find Full Text PDF

Cov-trans: an efficient algorithm for discontinuous transcript assembly in coronaviruses.

BMC Genomics

December 2024

School of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, Shandong Province, 266071, China.

Background: Discontinuous transcription allows coronaviruses to efficiently replicate and transmit within host cells, enhancing their adaptability and survival. Assembling viral transcripts is crucial for virology research and the development of antiviral strategies. However, traditional transcript assembly methods primarily designed for variable alternative splicing events in eukaryotes are not suitable for the viral transcript assembly problem.

View Article and Find Full Text PDF

Architects and Partners: The Dual Roles of Non-coding RNAs in Gene Fusion Events.

Methods Mol Biol

December 2024

Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Douglas, QLD, Australia.

Extensive research into gene fusions in cancer and other diseases has led to the discovery of novel biomarkers and therapeutic targets. Concurrently, various bioinformatics tools have been developed for fusion detection in RNA sequencing data, which, in the age of increasing affordability of sequencing, have delivered a large-scale identification of transcriptomic abnormalities. Historically, the focus of fusion transcript research was predominantly on coding RNAs and their resultant proteins, often overlooking non-coding RNAs (ncRNAs).

View Article and Find Full Text PDF

Gene fusions are nucleotide sequences formed due to errors in replication and transcription control. These errors, resulting from chromosomal translocation, transcriptional errors or trans-splicing, vary from cell to cell. The identification of fusions has become critical as key biomarkers for disease diagnosis and therapy in various cancers, significantly influencing modern medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!