Deterministic Magnetic Switching in Perpendicular Magnetic Trilayers Through Sunlight-Induced Photoelectron Injection.

Small

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China.

Published: July 2023

Finding an energy-efficient way of switching magnetization is crucial in spintronic devices, such as memories. Usually, spins are manipulated by spin-polarized currents or voltages in various ferromagnetic heterostructures; however, their energy consumption is relatively large. Here, a sunlight control of perpendicular magnetic anisotropy (PMA) in Pt (0.8 nm)/Co (0.65 nm)/Pt (2.5 nm)/PN Si heterojunction in an energy-efficient manner is proposed. The coercive field (H ) is altered from 261 to 95 Oe (64% variation) under sunlight illumination, enabling a nearly 180° deterministic magnetization switching reversibly with a 140 Oe magnetic bias assistant. The element-resolved X-ray circular dichroism measurement reveals different L3 and L2 edge signals of the Co layer with or without sunlight, suggesting a photoelectron-induced redistribution of the orbital and spin moment in Co magnetization. The first-principle calculations also reveal that the photo-induced electrons shift the Fermi level of electrons and enhance the in-plane Rashba field around the Co/Pt interfaces, leading to a weakened PMA and corresponding H decreasing and magnetization switching accordingly. The sunlight control of PMA may provide an alternative way for magnetic recording, which is energy efficient and would reduce the Joule heat from the high switching current.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202301955DOI Listing

Publication Analysis

Top Keywords

perpendicular magnetic
8
sunlight control
8
magnetization switching
8
switching
5
deterministic magnetic
4
magnetic switching
4
switching perpendicular
4
magnetic
4
magnetic trilayers
4
trilayers sunlight-induced
4

Similar Publications

Background: TDP-43 (TAR DNA-binding protein 43) is one of the most frequently observed co-pathologies in Alzheimer's disease (AD). Recognizing the diversity of pathological features in individuals with AD, including the presence of TDP-43, may lead to more personalized and effective treatment approaches. We investigate ante-mortem cortical microstructural changes in MRI with subsequent autopsy confirmation of Alzheimer's disease neuropathological changes (ADNC) with and without TDP-43 comorbidity.

View Article and Find Full Text PDF

Background: TDP-43 (TAR DNA-binding protein 43) is one of the most frequently observed co-pathologies in Alzheimer's disease (AD). Recognizing the diversity of pathological features in individuals with AD, including the presence of TDP-43, may lead to more personalized and effective treatment approaches. We investigate ante-mortem cortical microstructural changes in MRI with subsequent autopsy confirmation of Alzheimer's disease neuropathological changes (ADNC) with and without TDP-43 comorbidity.

View Article and Find Full Text PDF

Tuning anomalous Hall conductivity antiferromagnetic configurations in GdPtBi.

Phys Chem Chem Phys

January 2025

Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Jawa Barat, Indonesia.

The magnetic, electronic, and topological properties of GdPtBi were systematically investigated using first-principles density functional theory (DFT) calculations. Various magnetic configurations were examined, including ferromagnetic (FM) and antiferromagnetic (AFM) states, with particular focus on AFM states where the Gd magnetic moments align either parallel (AFM) or perpendicular (AFM) to the [111] crystal direction. For AFM, the in-plane angles were varied at = 0°, 15°, and 30° (denoted as AFM, AFM, and AFM, respectively).

View Article and Find Full Text PDF

Superconducting spintronics explores the interplay between superconductivity and magnetism, sparking substantial interest in nonunitary superconductors as a platform for magneto-superconducting phenomena. However, identifying nonunitary superconductors remains challenging. We demonstrate that spin current driven by thermal gradients sensitively probes the nature of the condensate in nonunitary superconductors.

View Article and Find Full Text PDF

Fast barrier-free switching in synthetic antiferromagnets.

Sci Rep

January 2025

INFN-Laboratori Nazionali di Frascati, Via E. Fermi, 54, 00044, Frascati, Italy.

We analytically solve the Landau-Lifshitz equations for the collective magnetization dynamics in a synthetic antiferromagnet (SAF) nanoparticle and uncover a regime of barrier-free switching under a short small-amplitude magnetic field pulse applied perpendicular to the SAF plane. We give examples of specific implementations for forming such low-power and ultra-fast switching pulses. For fully optical, resonant, barrier-free SAF switching we estimate the power per write operation to be  pJ, 10-100 times smaller than for conventional quasi-static rotation, which should be attractive for memory applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!