A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Localized Simple Multiple Kernel K-Means Clustering with Matrix-Induced Regularization. | LitMetric

Localized Simple Multiple Kernel K-Means Clustering with Matrix-Induced Regularization.

Comput Intell Neurosci

School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China.

Published: March 2023

Multikernel clustering achieves clustering of linearly inseparable data by applying a kernel method to samples in multiple views. A localized SimpleMKKM (LI-SimpleMKKM) algorithm has recently been proposed to perform min-max optimization in multikernel clustering where each instance is only required to be aligned with a certain proportion of the relatively close samples. The method has improved the reliability of clustering by focusing on the more closely paired samples and dropping the more distant ones. Although LI-SimpleMKKM achieves remarkable success in a wide range of applications, the method keeps the sum of the kernel weights unchanged. Thus, it restricts kernel weights and does not consider the correlation between the kernel matrices, especially between paired instances. To overcome such limitations, we propose adding a matrix-induced regularization to localized SimpleMKKM (LI-SimpleMKKM-MR). Our approach addresses the kernel weight restrictions with the regularization term and enhances the complementarity between base kernels. Thus, it does not limit kernel weights and fully considers the correlation between paired instances. Extensive experiments on several publicly available multikernel datasets show that our method performs better than its counterparts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038733PMC
http://dx.doi.org/10.1155/2023/6654304DOI Listing

Publication Analysis

Top Keywords

kernel weights
12
matrix-induced regularization
8
multikernel clustering
8
localized simplemkkm
8
paired instances
8
kernel
7
clustering
5
localized simple
4
simple multiple
4
multiple kernel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!