MEK is a canonical effector of mutant KRAS; however, MEK inhibitors fail to yield satisfactory clinical outcomes in -mutant cancers. Here, we identified mitochondrial oxidative phosphorylation (OXPHOS) induction as a profound metabolic alteration to confer -mutant non-small cell lung cancer (NSCLC) resistance to the clinical MEK inhibitor trametinib. Metabolic flux analysis demonstrated that pyruvate metabolism and fatty acid oxidation were markedly enhanced and coordinately powered the OXPHOS system in resistant cells after trametinib treatment, satisfying their energy demand and protecting them from apoptosis. As molecular events in this process, the pyruvate dehydrogenase complex (PDHc) and carnitine palmitoyl transferase IA (CPTIA), two rate-limiting enzymes that control the metabolic flux of pyruvate and palmitic acid to mitochondrial respiration were activated through phosphorylation and transcriptional regulation. Importantly, the co-administration of trametinib and IACS-010759, a clinical mitochondrial complex I inhibitor that blocks OXPHOS, significantly impeded tumor growth and prolonged mouse survival. Overall, our findings reveal that MEK inhibitor therapy creates a metabolic vulnerability in the mitochondria and further develop an effective combinatorial strategy to circumvent MEK inhibitors resistance in -driven NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031260PMC
http://dx.doi.org/10.1016/j.apsb.2022.10.023DOI Listing

Publication Analysis

Top Keywords

mek inhibitor
12
metabolic vulnerability
8
vulnerability mitochondria
8
lung cancer
8
mek inhibitors
8
metabolic flux
8
mek
6
targeting metabolic
4
mitochondria conquers
4
conquers mek
4

Similar Publications

Two Cysteines in Raf Kinase Inhibitor Protein Make Differential Contributions to Structural Dynamics In Vitro.

Molecules

January 2025

Cancer Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea.

As a scaffolding protein, Raf kinase binding protein (RKIP) is involved in a variety of cellular pathways, including the Raf-MEK-ERK-cascade. It acts as a negative regulator by binding to its partners, making it an attractive target in the development of therapeutic strategies for cancer. Despite its structural stability as a monomer, RKIP may form a dimer, resulting in the switching of binding partners.

View Article and Find Full Text PDF

The treatment landscape for advanced melanoma has transformed significantly with the advent of BRAF and MEK inhibitors (BRAF/MEKi) targeting V600 mutations, as well as immune checkpoint inhibitors (ICI) like anti-PD-1 monotherapy or its combinations with anti-CTLA-4 or anti-LAG-3. Despite that, many patients still do not benefit from these treatments at all or develop resistance mechanisms. Therefore, prognostic and predictive biomarkers are needed to identify patients who should switch or escalate their treatment strategies or initiate an intensive follow-up.

View Article and Find Full Text PDF

MEK inhibitors, such as trametinib, have shown therapeutic potential in head and neck squamous cell carcinoma (HNSCC). However, the factors influencing cancer cell sensitivity and resistance to MEK inhibition remain poorly understood. In our study, we observed that MEK inhibition significantly reduced the expression of MYC, a transcription factor critical for the therapeutic response.

View Article and Find Full Text PDF

Background: Oral therapeutic options for plexiform neurofibromas (PNs) in individuals with neurofibromatosis type 1 (NF1) are receiving attention in clinical research. The MEK inhibitor (MEKi) Selumetinib is FDA-approved in children ages 2+ years with inoperable PNs, and shows activity in adults. Prolonged therapy with selumetinib is necessary to maintain tumor reduction.

View Article and Find Full Text PDF

Rat Sarcoma Virus Family Genes in Acute Myeloid Leukemia: Pathogenetic and Clinical Implications.

Biomedicines

January 2025

Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy.

Acute myeloid leukemias (AMLs) comprise a group of genetically heterogeneous hematological malignancies that result in the abnormal growth of leukemic cells and halt the maturation process of normal hematopoietic stem cells. Despite using molecular and cytogenetic risk classification to guide treatment decisions, most AML patients survive for less than five years. A deeper comprehension of the disease's biology and the use of new, targeted therapy approaches could potentially increase cure rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!