Research progress of Astaxanthin nano-based drug delivery system: Applications, prospects and challenges?

Front Pharmacol

Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China.

Published: March 2023

AI Article Synopsis

  • Astaxanthin (ASX) is a carotenoid known for its strong antioxidant properties and potential health benefits in preventing diseases like cancer and diabetes.
  • Its medical use is limited by issues such as poor water solubility and chemical instability.
  • Recent advancements in nano-based drug delivery systems, like nanoparticles and liposomes, show promise for enhancing Astaxanthin's stability, efficacy, and targeted delivery in clinical applications.

Article Abstract

Astaxanthin (ASX) is a kind of carotenoid widely distributed in nature, which has been shown to extremely strong antioxidative effects and significant preventive and therapeutic effects on cancer, diabetes, cardiovascular disease, etc. However, its application in the medical field is greatly limited due to its poor water solubility, unstable chemical properties and other shortcomings. In recent years, the nano-based drug delivery systems such as nanoparticles, liposomes, nanoemulsions, nanodispersions, and polymer micelles, have been used as Astaxanthin delivery carriers with great potential for clinical applications, which have been proved that they can enhance the stability and efficacy of Astaxanthin and achieve targeted delivery of Astaxanthin. Herein, based on the pharmacological effects of Astaxanthin, we reviewed the characteristics of various drug delivery carriers, which is of great significance for improving the bioavailability of Astaxanthin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034004PMC
http://dx.doi.org/10.3389/fphar.2023.1102888DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
nano-based drug
8
delivery carriers
8
carriers great
8
astaxanthin
6
delivery
5
progress astaxanthin
4
astaxanthin nano-based
4
delivery system
4
system applications
4

Similar Publications

Cystine-Modified Lignin-Copper Coordination Nanocarriers Improve the Therapeutic Efficacy of Tyrosine Kinase Inhibition via Cuproptosis.

ACS Appl Mater Interfaces

January 2025

Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China.

The clinical application of tyrosine kinase inhibitors (TKIs) is rapidly growing and has emerged as a cornerstone in the treatment of both solid tumors and hematologic malignancies. However, resistance to TKI targets and disease progression remain inevitable. Nanocarrier-mediated delivery has emerged as a promising strategy to overcome the limitations of the TKI application.

View Article and Find Full Text PDF

The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.

View Article and Find Full Text PDF

Innovative Applications of Bacteria and Their Derivatives in Targeted Tumor Therapy.

ACS Nano

January 2025

Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.

Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Triethylamine-mediated protonation-deprotonation unlocks dual-drug self assembly to suppress breast cancer progression and metastasis.

Proc Natl Acad Sci U S A

February 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.

Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.

View Article and Find Full Text PDF

Oral Microalgae-Based Biosystem to Enhance Irreversible Electroporation Immunotherapy in Hepatocellular Carcinoma.

Adv Sci (Weinh)

January 2025

Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.

Irreversible electroporation (IRE) is a novel local tumor ablation technique that can potentially stimulate immune responses. However, IRE alone cannot effectively activate the immune system or prevent distant metastases. Therefore, this study utilized the biocompatibility of Chlorella vulgaris (C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!