Oxide supports play an important role in enhancing the catalytic properties of transition metal nanoparticles in heterogeneous catalysis. How extensively interactions between the oxide support and the nanoparticles impact the electronic structure as well as the surface properties of the nanoparticles is hence of high interest. In this study, the influence of a magnesium oxide support on the properties of copper nanoparticles with different size, shape, and adsorption sites is investigated using density functional theory (DFT) calculations. By proposing simple models to reduce the cost of the calculations while maintaining the accuracy of the results, we show using the nonreducible oxide support MgO as an example that there is no significant influence of the MgO support on the electronic structure of the copper nanoparticles, with the exception of adsorption directly at the Cu-MgO interface. We also propose a simplified methodology that allows us to reduce the cost of the calculations, while the accuracy of the results is maintained. We demonstrate in addition that the Cu nanowire model corresponds well to the nanoparticle model, which reduces the computational cost even further.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034847PMC
http://dx.doi.org/10.1021/acsomega.3c00502DOI Listing

Publication Analysis

Top Keywords

copper nanoparticles
12
oxide support
12
heterogeneous catalysis
8
dft calculations
8
magnesium oxide
8
electronic structure
8
reduce cost
8
cost calculations
8
nanoparticles
6
oxide
5

Similar Publications

The emerging combination of chemotherapy and radionuclide therapy has been actively investigated to overcome the limitations of monotherapy and augment therapeutic efficacy. However, it remains a challenge to design a single delivery vehicle that can incorporate chemotherapeutics and radionuclides into a compact structure. Here, a chelator DOTA- or NOTA-modified Evans blue conjugated camptothecin molecule (EB-CPT) nanoprodrug was synthesized, which could self-assemble into nanoparticles due to its inherent amphiphilicity.

View Article and Find Full Text PDF

As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility.

View Article and Find Full Text PDF

A spherical nucleic acid (SNA, AuNPs-aptamer) into CRISPR/Cas12a system combined with poly T-template copper nanoparticles as fluorescence reporter was fabricated to establish an amplification-free sensitive method for Staphylococcus aureus (S. aureus) detection. This method, named PTCas12a, utilizes the concept that the bifunction of SNA recognizes the S.

View Article and Find Full Text PDF

A mitochondria-interfering nanocomplex cooperates with photodynamic therapy to boost antitumor immunity.

Biomaterials

January 2025

National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China. Electronic address:

Immunotherapeutics against triple-negative breast cancer (TNBC) hold great promise. In this work, we provide a combination therapy for simultaneous increasing tumor immunogenicity and down-regulating programmed cell death ligand 1 (PD-L1) to boost antitumor immunity in TNBC. We prepare bis (diethyldithiocarbamate)-copper/indocyanine green nanoparticles (CuET/ICG NPs) simply in aqueous with one-pot method.

View Article and Find Full Text PDF

There is an important concern about the potential health and environmental risks that may develop due to exposure to copper oxide nanoparticles (CuO-NPs). Selenium is an essential trace element. It supports the expression of a variety of selenoproteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!