A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Synergistic Combination of AuNRs and C Dots as a Multifunctional Material for Ice Recrystallization Inhibition and Rapid Rewarming. | LitMetric

Robust platforms and advanced biocompatible materials having diverse performances are in tremendous demand for cryopreservation of biocells, which are greatly limited by the crystallization, formation, and growth of ice crystals. The fickle structure and the arduous extraction process of modern attainable antifreezing proteins cause fatal cryoinjury of the cells making it challenging to develop anti-icing materials. Thus, designing Au colloids is an effective way to combat cell-damaging concerns during the ice freezing-thawing process. Herein, we propose an emerging biomimetic hybrid nanomaterial (AuNR@SiO-CDs) prepared by combining the photoheating and rewarming controlling characteristics of carbon dots (CDs) and gold nanorods (AuNRs), respectively, via a SiO scaffold that has an optimal aspect ratio of ∼4.4. The performance of the material is applied in the freezing and resuscitation of Hela cells. The typical linkage between the AuNR and CDs not only retains the stable structure but also possesses the symmetric functional characteristics of affirmative cryoprotectant materials and sustained low cytotoxicity of cell viability >90%. The cell recovery rate of the Hela cell is significantly improved to ∼60%, which is propped up to >4% higher by the laser irradiation dose. The above hybrid material is paving a path toward novel bionic antifreezing proteins and is envisioned for ice recrystallization inhibition and rapid rewarming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034974PMC
http://dx.doi.org/10.1021/acsomega.3c00079DOI Listing

Publication Analysis

Top Keywords

ice recrystallization
8
recrystallization inhibition
8
inhibition rapid
8
rapid rewarming
8
antifreezing proteins
8
synergistic combination
4
combination aunrs
4
aunrs dots
4
dots multifunctional
4
multifunctional material
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!