Hydrogen as clean energy can effectively solve the problems of fossil energy shortage and environmental pollution. However, traditional methods of H production are generally lacking in application value. The procedure for manufacturing H by a reaction between active metals and HO has received wide attention due to its high efficiency. Profound insights into the mechanism and influencing factors of H production from active metals are insufficient. The ReaxFF reaction force field module of the Amsterdam Modeling Suite (AMS) is applied in this paper to simulate the reaction of Ni-Al alloys with HO. It reveals the reaction route of H production at the atomic level. The calculation results show that Al is the most critical active site. Moreover, the H production capacity of the alloy varies with the crystal structure and atomic ratio. The H production rate decreases due to the influence of the water solvation layer and surface coverage. Oxygen reduces the H production capacity because oxygen reduces the active sites for HO adsorption by forming a stable oxide layer with Al.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035018PMC
http://dx.doi.org/10.1021/acsomega.2c06188DOI Listing

Publication Analysis

Top Keywords

force field
8
active metals
8
production capacity
8
oxygen reduces
8
production
6
molecular dynamic
4
dynamic simulation
4
simulation ni-al
4
ni-al alloy-ho
4
alloy-ho reactions
4

Similar Publications

The solute carrier (SLC) family of membrane proteins is a large class of transporters for many small molecules that are vital for cellular function. Several pathogenic mutations are reported in the glucose transporter subfamily SLC2, causing Glut1-deficiency syndrome (GLUT1DS1, GLUT1DS2), epilepsy (EIG2) and cryohydrocytosis with neurological defects (Dystonia-9). Understanding the link between these mutations and transporter dynamics is crucial to elucidate their role in the dysfunction of the underlying transport mechanism, which we investigate using molecular dynamics simulations.

View Article and Find Full Text PDF

Exposure to anthracene can cause skin and eye irritation, respiratory issues, and potential long-term health risks, including carcinogenic effects. It is also toxic to aquatic and human life and has the potential for long-term environmental contamination. This study aims to alleviate the adverse environmental effects of anthracene through fungal degradation, focusing on bioremediation approaches using bioinformatics.

View Article and Find Full Text PDF

Supramolecular polymers represent a distinctive class of polymers exhibiting similarities with covalent polymers, while also showcasing distinctive attributes such as responsiveness, reversibility, self-healing, and dynamism, which are conferred upon them by non-covalent interactions including hydrogen bonding, electrostatic interactions, van der Waals forces, π-π arrangements, and donor-acceptor interactions, among others. The noteworthy features of these supramolecular polymers have attracted considerable interest across diverse fields of science and technology, spanning electrochemistry, environmental science, drug delivery and tissue engineering. Nonetheless, the prevailing research focus in the realm of supramolecular polymers revolves around the advancement of novel methodologies aimed at synthesizing a broad spectrum of polymers characterized by diverse topologies.

View Article and Find Full Text PDF

This Extracorporeal Life Support Organization guideline describes early rehabilitation or mobilization of patients on extracorporeal membrane oxygenation (ECMO). The guideline describes useful and safe practices put together by an international interprofessional team with extensive experience in the field of ECMO and ECMO rehabilitation or mobilization. The guideline is not intended to define the delivery of care or substitute sound clinical judgment.

View Article and Find Full Text PDF

Accurate Physics-Based Prediction of Binding Affinities of RNA- and DNA-Targeting Ligands.

J Chem Inf Model

January 2025

Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States.

Article Synopsis
  • Predicting how well ligands bind to nucleic acids is challenging, which limits the development of small-molecule drugs for diseases like cancer and infections.
  • Recent advancements in computational methods, particularly free-energy perturbation (FEP), have improved predictions for protein-ligand binding affinities, but its effectiveness for nucleic acids was unclear.
  • This study found that using FEP+ software with the OPLS4 force field can accurately predict binding energies for over 100 ligands interacting with DNA/RNA, achieving predictions that closely match experimental data and could aid drug discovery.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!