Low back pain is one of the top disorders that leads to disability and affects disability-adjusted life years (DALY) globally. Intervertebral disc degeneration (IDD) and subsequent discogenic pain composed major causes of low back pain. Recent studies have identified several important risk factors contributing to IDD's development, such as inflammation, mechanical imbalance, and aging. Based on these etiology findings, three categories of animal models for inducing IDD are developed: the damage-induced model, the mechanical model, and the spontaneous model. These models are essential measures in studying the natural history of IDD and finding the possible therapeutic target against IDD. In this review, we will discuss the technical details of these models, the duration between model establishment, the occurrence of observable degeneration, and the potential in different study ranges. In promoting future research for IDD, each animal model should examine its concordance with natural IDD pathogenesis in humans. We hope this review can enhance the understanding and proper use of multiple animal models, which may attract more attention to this disease and contribute to translation research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036602PMC
http://dx.doi.org/10.3389/fsurg.2022.1089244DOI Listing

Publication Analysis

Top Keywords

intervertebral disc
8
disc degeneration
8
animal model
8
low pain
8
animal models
8
model
6
idd
6
models
5
constructing intervertebral
4
animal
4

Similar Publications

An 18-year-old female patient presented with a 1-month history of low back pain, which had worsened and was accompanied by radiating pain in the right lower limb for half a month. She was admitted to our hospital with computed tomography and magnetic resonance imaging findings suggesting calcification of the L3/4 disc and a large intraspinal mass at the L2-4 level. The patient's symptoms did not improve with conservative treatment, and her muscle strength rapidly declined.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IVDD) is one of the main causes of chronic low back pain. The degenerative process is often initiated by an imbalance between catabolic and anabolic pathways. Despite the large socio-economic impact, the initiation and progress of disc degeneration are poorly understood.

View Article and Find Full Text PDF

Characterized by a cascade of profound changes in nucleus pulposus (NP) cells, extracellular matrix (ECM), and biomechanics, intervertebral disc degeneration is a common multifactorial condition that may lead to various degenerative lumbar disorders. Therapeutic strategies targeting a single factor have shown limited efficacy in treating disc degeneration, and approaches that address multiple pathological ingredients are barely reported. In this study, engineered cell membrane-encapsulated keratin nanoparticles are developed to simultaneously alleviate NP cell senescence and promote ECM remodeling.

View Article and Find Full Text PDF

Study Design: A retrospective chart review was conducted at a single institution.

Objective: The purpose of this study was to investigate the clinical outcomes of cervical disc arthroplasty (CDA) used for the treatment of symptomatic adjacent segment disease (ASD) developed after anterior cervical discectomy and fusion (ACDF).

Background: A major clinical concern following ACDF is the development of ASD.

View Article and Find Full Text PDF

Intervertebral disc regeneration - Is it possible?

Acta Orthop Traumatol Turc

December 2024

Department of Orthopedics and Traumatology, Brugmann University Hospital Center, Free University of Brussels, Brussels, Belgium.

Objective: The aim of this study was to evaluate disc metabolism after decreasing the axial load through surgery by assessing the glycosaminoglycan content through a non-invasive method-delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC).

Methods: Sixteen patients with mono-segmental disc degeneration (L4-L5 or L5-S1) who underwent posterior lumbar spine fixation with intervertebral distraction of 2 consecutive vertebrae using monoaxial transpedicular screws and lyophilized allograft to achieve segmental fusion, and who had a follow-up period of at least 2 years, were included in this study. The first lumbar disc was used as the control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!