Chemical modifications to DNA bases, including DNA adducts arising from reactions with electrophilic chemicals, are well-known to impact cell growth, miscode during replication, and influence disease etiology. However, knowledge of how genomic sequences and structures influence the accumulation of alkylated DNA bases is not broadly characterized with high resolution, nor have these patterns been linked with overall quantities of modified bases in the genome. For benzo(a) pyrene (BaP), a ubiquitous environmental carcinogen, we developed a single-nucleotide resolution damage sequencing method to map in a human lung cell line the main mutagenic adduct arising from BaP. Furthermore, we combined this analysis with quantitative mass spectrometry to evaluate the dose-response profile of adduct formation. By comparing damage abundance with DNase hypersensitive sites, transcription levels, and other genome annotation data, we found that although overall adduct levels rose with increasing chemical exposure concentration, genomic distribution patterns consistently correlated with chromatin state and transcriptional status. Moreover, due to the single nucleotide resolution characteristics of this DNA damage map, we could determine preferred DNA triad sequence contexts for alkylation accumulation, revealing a characteristic DNA damage signature. This new BaP damage signature had a profile highly similar to mutational signatures identified previously in lung cancer genomes from smokers. Thus, these data provide insight on how genomic features shape the accumulation of alkylation products in the genome and predictive strategies for linking single-nucleotide resolution in vitro damage maps with human cancer mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037492 | PMC |
http://dx.doi.org/10.1021/acscentsci.2c01100 | DOI Listing |
Cell Rep Phys Sci
November 2024
Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE.
Disordered single-stranded RNA (ssRNA) molecules, like their well-folded counterparts, have crucial functions that depend on their structures. However, since native ssRNAs constitute a highly heterogeneous conformer population, their structural characterization poses challenges. One important question regards the role of sequence in influencing ssRNA structure.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
Background: Heredity and epigenetics affect the pathogenesis of microscopic polyangiitis (MPA). Tyrosine kinase 2 (TYK2) polymorphisms (rs2304256C > A, rs280519A > G, and rs12720270G > A) may be potential protective factors against anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Current research suggests that TYK2 is associated with various autoimmune diseases; however, no study has examined the relationship between TYK2 polymorphisms and AAV.
View Article and Find Full Text PDFPeerJ
December 2024
National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
Background: Mungbean () is one of the most socio-economically important leguminous food crops of Asia and a rich source of dietary protein and micronutrients. Understanding its genetic makeup is crucial for genetic improvement and cultivar development.
Methods: In this study, we combined single-tube long-fragment reads (stLFR) sequencing technology with high-throughput chromosome conformation capture (Hi-C) technique to obtain a chromosome-level assembly of cultivar 'KUML4'.
Front Immunol
December 2024
Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Lichen planus (LP), an autoimmune disorder, remains incompletely understood in terms of its etiological mechanisms. This study aims to elucidate causal relationships among immune cell populations, plasma metabolites, and lichen planus using Mendelian randomization (MR) techniques.
Methods: Employing a two-sample, two-step MR approach, with single nucleotide polymorphisms (SNP) serving as genetic instruments for both exposures and mediators, this study minimizes biases from confounding and reverse causality.
Cureus
November 2024
Department of Medicine and Surgery, University of Insubria, Varese, ITA.
Background: Obstructive sleep apnea syndrome (OSAS) is a chronic syndrome, affecting about 1%-5% of children. OSAS is characterized by increased resistance and collapse of the upper airways, with different degrees of severity requiring interventions ranging from lifestyle modifications to surgery. Sympathetic activity is increased in OSAS, and the reduction of disease symptoms, occurring after adenotonsillectomy, correlates with biomarkers indicating a reduced sympathetic response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!