Analyzing and comparing the effects of labor-saving cultivation modes on photosynthesis, as well as studying their vertical canopy architecture, can improve the tree structure of high-quality and high-yield citrus and selection of labor-saving cultivation modes. The photosynthesis of 1080 leaves of two labor-saving cultivation modes (wide-row and narrow-plant mode and fenced mode) comparing with the traditional mode were measured, and nitrogen content of all leaves and photosynthetic nitrogen use efficiency (PNUE) were determined. Unmanned aerial vehicle (UAV)-based light detection and ranging (LiDAR) data were used to assess the vertical architecture of three citrus cultivation modes. Results showed that for the wide-row and narrow-plant and traditional modes leaf photosynthetic CO assimilation rate, stomatal conductance, and transpiration rate of the upper layer were significantly higher than those of the middle layer, and values of the middle layer were markedly higher than those of the lower layer. In the fenced mode, a significant difference in photosynthetic factors between the upper and middle layers was not observed. A vertical canopy distribution had a more significant effect on PNUE in the traditional mode. Leaves in the fenced mode had distinct photosynthetic advantages and higher PNUE. UAV-based LiDAR data effectively revealed the differences in the vertical canopy architecture of citrus trees by enabling calculating the density and height percentile of the LiDAR point cloud. The point cloud densities of three cultivation modes were significantly different for all LiDAR density slices, especially at higher canopy heights. The labor-saving modes, particularly the fenced mode, had significantly higher height percentile data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031737 | PMC |
http://dx.doi.org/10.1093/hr/uhad018 | DOI Listing |
Fungal Biol
February 2025
School of Agricultural and Biological Engineering, Longdong University, Qingyang, 745000, China; Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, 745000, China.
The root of Angelica sinensis (Oliv.) Diels (Ang) is a bulk Chinese herbal medicine, and the microecological regulation is a sustainable means to enhance its quality. In this study, Angs at five bases (LZ, XZ, QS, PM, MZC) in Minxian County, Gansu Province were taken as the research objects.
View Article and Find Full Text PDF, a special economic aquaculture species in China, is valued highly for its medicinal and nutritional benefits. However, the muscle of farmed exhibits a strong off-flavor, resulting in poor flavor quality. To enhance the flavor quality of the meat, this study examined the volatile compounds in muscle by establishing identification methods for these volatile odor compounds and comparing the differences between the two aquaculture modes.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
Intercropping has the potential to improve phosphorus (P) uptake and crop growth, but the potential benefits and relative contributions of root morphology and arbuscular mycorrhizal fungi (AMF) colonization are largely unknown for the intercropping of rice and soybean under dry cultivation. Both field and pot experiments were conducted with dry-cultivated rice ( L.) and soybean ( L.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá 87020-900, Brazil.
Chemical weed control is a significant agricultural concern, and reliance on a limited range of herbicide action modes has increased resistant weed species, many of which use C4 metabolism. As a result, the identification of novel herbicidal agents with low toxicity targeting C4 plants becomes imperative. An assessment was conducted on the impact of 3-cyanobenzoic acid on the growth and photosynthetic processes of maize (), a representative C4 plant, cultivated hydroponically over 14 days.
View Article and Find Full Text PDFChemosphere
January 2025
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia.
Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!