Hypobaric hypoxia (HH) is the primary challenge at highland. Prolonged HH exposure impairs right cardiac function. Mitochondria-associated membrane (MAM) plays a principal role in regulating mitochondrial function under hypoxia, but the mechanism was unclear. In this study, proteomics analysis identified that PACS2, a key protein in MAM, and mitophagy were downregulated in HH. Metabolomics analysis indicated suppression of glucose and fatty acids aerobic oxidation in HH conditions. Cardiomyocyte deficiency disrupted MAM formation and endoplasmic reticulum (ER)-mitochondria calcium flux, further inhibiting mitophagy and energy metabolism in HH. overexpression reversed these effects. Cardiac-specific knockout of exacerbated mitophagy inhibition, cardiomyocyte injury, and right cardiac dysfunction induced by HH. Conditional knock-in of recovered HH-induced right cardiac impairment. Thus, PACS2 is essential for protecting cardiomyocytes through ER-mitochondria calcium flux, mitophagy, and mitochondrial energy metabolism. Our work provides insight into the mechanism of HH-induced cardiomyocyte injury and potential targets for maintaining the right cardiac function at the highland.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034453PMC
http://dx.doi.org/10.1016/j.isci.2023.106328DOI Listing

Publication Analysis

Top Keywords

cardiac function
12
mitochondria-associated membrane
8
hypobaric hypoxia
8
er-mitochondria calcium
8
calcium flux
8
energy metabolism
8
cardiomyocyte injury
8
cardiac
5
membrane protein
4
protein pacs2
4

Similar Publications

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!