Although lithium-sulfur batteries possess the highest theoretical capacity and lowest cost among all known rechargeable batteries, their commercialization is still hampered by the intrinsic disadvantages of low conductivity of sulfur and polysulfide shuttle effect, which is most critical. Considerable research efforts have been dedicated to solving these difficulties for every part of Li-S batteries. Separator modification with metal electrocatalysts is a promising approach to overcome the major part of these disadvantages. This work focuses on the development of Ni nanoparticles encapsulated in a few-layer nitrogen-doped graphene supported by nitrogen-doped graphitic carbon (Ni@NGC) with different metal loadings as separator modifications. The effect of metal loading on the Li-S electrochemical reaction kinetics and performance of Li-S batteries was investigated. Controlling the Ni loading allowed for the modulation of the surface area-to-metal content ratio, which influenced the reaction kinetics and cycling performance of Li-S cells. Among the separators with different Ni loadings, the one with 9 wt% Ni exhibited the most efficient acceleration of the polysulfide redox reaction and minimized the polysulfide shuttling effect. Batteries with this separator retained 77.2% capacity after 200 cycles at 0.5C, with a high sulfur loading of ∼4.0 mg cm, while a bare separator showed 51.3% capacity retention after 200 cycles under the same conditions. This work reveals that there is a vast utility space for carbon-encapsulated Ni nanoparticles in electrochemical energy storage devices with optimal selection and rational design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031747 | PMC |
http://dx.doi.org/10.1039/d3ra00891f | DOI Listing |
Nanomaterials (Basel)
December 2024
Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
The shuttling effect of polysulfides in lithium-sulfur batteries seriously affects their performance. Herein, NiFeO derived from natural hematite is coated on a PP separator (NFO@PP), which can effectively block the shuttling of polysulfides and has strong adsorption and catalytic capabilities. The NFO@PP cell has an initial capacity of up to 1258.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
Alluaudite-type NaFe(SO) (NFS) with high theoretical energy density is regarded as the promising cathode of sodium-ion batteries (SIBs), while practical rate and cyclic performances are still hindered by intrinsic poor conductivity. Here, a facile method is developed, collaborating high-boiling organic solvents assisted colloidal synthesis (HOS-CS) with sintering for tailoring NaFe(SO) nanocrystals decorated by conductive carbon network toward high-rate-capability cathode of SIBs. Impressively, the as-prepared NaFe(SO)@MC provides 60.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore639798 ,Singapore.
Understanding the structure-property relationship and the way in which catalysts facilitate polysulfide conversion is crucial for the rational design of lithium-sulfur (Li-S) battery catalysts. Herein, a series of NiAlO, CoAlO, and CuAlO spinel oxides with varying Ni, Co, or Cu tetrahedral and octahedral site occupancy are studied as Li-S battery catalysts. Combined with experimental and theoretical analysis, the tetrahedral site is identified as the most active site for enhancing polysulfide adsorption and charge transfer.
View Article and Find Full Text PDFMolecules
December 2024
Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
Lithium-sulfur (Li-S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO nanosheets onto hierarchical porous carbon microspheres (HPCs) to form an HPCs/S@MnO composite for advanced lithium-sulfur batteries. The delicately designed hybrid architecture can effectively confine LiPSs and obtain high sulfur loading up to 10 mg cm, in which the inner carbon microspheres with a large pore volume and large specific surface area can encapsulate high sulfur content, and the outer MnO nanosheets, as a catalytic layer, can improve the conversion reaction of LiPSs and suppress the shuttle effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!