Gliomas are inherently difficult to treat by radiotherapy because glioma cells become radioresistant over time. However, combining radiotherapy with a radiosensitizer could be an effective strategy to mitigate the radioresistance of glioma cells. Gold nanoparticles (AuNPs) have emerged as a promising nanomaterial for cancer therapy, but little is known about whether AuNPs and X-ray radiation have cytotoxic synergistic effects against tumors. In this study, we found that the combination of AuNPs and X-ray irradiation significantly reduced the viabilities, as well as the migration and invasion, of glioma cells. Mechanistically, we observed that the AuNPs inhibited radiation-induced CCL2 expression by inhibiting the TRAF6/NF-κB pathway, which likely manifested the synergistic therapeutic effect between the AuNPs and X-ray radiation. The AuNPs also re-sensitized radioresistant glioma cells by inhibiting CCL2 expression. These results were also observed in another tumor cell line with a different molecular pattern, indicating that the underlying mechanism may be ubiquitous through cancer cells. Lastly, using the glioma mouse model, we observed that AuNPs significantly reduced tumor growth in the presence of X-ray radiation compared to radiotherapy alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036657PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e14362DOI Listing

Publication Analysis

Top Keywords

glioma cells
20
ccl2 expression
12
aunps x-ray
12
x-ray radiation
12
gold nanoparticles
8
cells inhibiting
8
inhibiting traf6/nf-κb
8
observed aunps
8
aunps
7
glioma
6

Similar Publications

Pediatric high-grade gliomas (pHGG) and pediatric diffuse midline gliomas (pDMG) are devastating diseases without durable and curative options. Although targeted immunotherapy has shown promise, the field lacks immunocompetent animal models to study these processes in detail. To achieve this, we developed a fully immunocompetent, genetically engineered mouse model (GEMM) for pDMG and pHGG that incorporates the glioma-associated antigen, interleukin 13 receptor alpha 2 (IL13RA2).

View Article and Find Full Text PDF

Inhibitory Effect of PRMT5/MTA Inhibitor on MTAP-Deficient Glioma May Be Influenced by Surrounding Normal Cells.

Cancer Med

December 2024

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, People's Republic of China.

Background: Methylthioadenosine phosphorylase (MTAP) and protein arginine methyltransferase 5 (PRMT5) are considered to be a synthetic lethal pair of targets, due to the fact that deletion of MTAP leads to massive production of methylthioadenosine (MTA) decreasing the activity of PRMT5. In vitro and in vivo experiments have demonstrated that MRTX1719, a small molecule that selectively binds PRMT5/MTA complex, significantly inhibits the proliferation of MTAP-deficient tumors and has a weak toxic effect on normal cells. However, it has been reported that MTAP-deleted tumors did not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma, which might lead to a diminished anti-cancer effect of MRTX1719.

View Article and Find Full Text PDF

PEGylated Nanoliposomal Doxorubicin Conjugated with Specific TREM2 Peptides for Glioma-Targeting Therapy.

Adv Healthc Mater

December 2024

Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.

PEGylated liposomes can deliver anti-cancer drugs to brain tumors, and achieve enhanced permeability and retention effects. Triggering receptor expressed on myeloid cells 2 (TREM2) is an excellent biomarker for precise therapy of glioma. The present study is aimed at designing PEGylated nanoliposomal doxorubicin (PLD) conjugated with peptides targeting TREM2 for glioma-targeting therapy.

View Article and Find Full Text PDF

Bright NIR-II emissive cyanine dye-loaded lipoprotein-mimicking nanoparticles for fluorescence imaging-guided and targeted NIR-II photothermal therapy of subcutaneous glioblastoma.

J Nanobiotechnology

December 2024

School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.

Cyanine dye-containing nanoparticles have widely been used in "all-in-one" NIR fluorescence imaging (FI)-guided photothermal therapy (PTT) because of their intrinsically large extinction coefficient and available physical and chemical modulation methods to tune absorption and emission wavelengths. The combination of good brightness and excellent tumor-targeting capacity is the key to realize efficient NIR-II FI-guided PTT. In this study, by covalently decorating NIR-II absorptive cyanine dyes with bulky AIE motify, we demonstrate how steric hindrance suppresses π-π stacking-induced fluorescence quenching and contributes to the good brightness of NIR-II FI of subcutaneous glioblastoma.

View Article and Find Full Text PDF

The sensitivity of human glioblastoma cells to virus-mediated oncolysis was investigated on five patient-derived cell lines. Primary glioblastoma cells (Gbl13n, Gbl16n, Gbl17n, Gbl25n, and Gbl27n) were infected with tenfold serial dilutions of the Leningrad-3 strain of the mumps virus, and virus reproduction and cytotoxicity were monitored for 96-120 h. Immortalized human non-tumor NKE cells were used as controls to determine the virus specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!