Codependent failure mechanisms between cathode and anode in solid state lithium metal batteries: mediated by uneven ion flux.

Sci Bull (Beijing)

Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Energy Institute, Qingdao 266101, China. Electronic address:

Published: April 2023

An in-depth understanding of the degradation mechanisms is a prerequisite for developing the next-generation all solid-state lithium metal battery (ASSLMB) technology. Herein, synchrotron X-ray computed tomography (SXCT) together with other probing tools and simulation method were employed to rediscover the decaying mechanisms of LiNiCoMnO (NCM)|LiPSCl (LPSCl)|Li ASSLMB. It reveals that the detachment and isolation of NCM particles cause the current focusing on the remaining active regions of cathode. The extent of Li stripping and the likelihood of Li plating into LPSCl facing the active NCM particles becomes higher. Besides, the homogeneity of Li stripping/plating is improved by homogenizing the electrochemical reactions at the cathode side by LiZr(PO) (LZP) coating. These results suggest a codependent failure mechanism between cathode and anode that is mediated by uneven Li ion flux. This work contributes to a holistic understanding of the degradation mechanisms in ASSLMBs and opens new opportunities for their further optimization and development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2023.03.021DOI Listing

Publication Analysis

Top Keywords

codependent failure
8
cathode anode
8
lithium metal
8
mediated uneven
8
uneven ion
8
ion flux
8
understanding degradation
8
degradation mechanisms
8
ncm particles
8
mechanisms
4

Similar Publications

The intensifying loss of coral reefs from global climate change and local stressors has seen international commitments targeted at conservation and repair, for example the Kunming-Montreal Global Biodiversity Framework. Fulfilling these targets requires decisions to be made on where, when, and how to act, ultimately dictating where limited resources will be deployed. Every choice on action or inaction toward our ocean has direct and indivisible consequences not only for the health of marine ecosystems but also for the health of humans, particularly those who directly depend on marine habitats, both culturally and economically.

View Article and Find Full Text PDF

Aim: To verify the relationship between gene polymorphisms of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) with inflammation markers and codependent metabolic variables in patients with type 2 diabetes mellitus and chronic heart failure (CHF).

Material And Methods: This study included 154 patients (mean age, 69.1±3.

View Article and Find Full Text PDF

A sizable proportion of patients with mild traumatic brain injury (mTBI) have persistent symptoms and functional impairments months to years following injury. This phenomenon is continually observed despite an explosion of research and interest in improving mTBI clinical outcomes over the last two decades. All pharmacological clinical trials to date have failed to demonstrate improved outcomes for mTBI.

View Article and Find Full Text PDF

➤ Joint alignment, meniscal status, and ligament stability are codependent factors involved in knee joint preservation, and any injury or imbalance can impact the knee articular cartilage status and can result in adverse clinical outcomes.➤ Cartilage preservation procedures in the knee will not result in optimal outcomes if there is joint malalignment, meniscal deficiency, or ligamentous instability.➤ Lower-extremity varus or valgus malalignment is a risk factor for the failure of an anterior cruciate ligament (ACL) reconstruction.

View Article and Find Full Text PDF

Background: We previously showed that loss of yes-associated protein 1 (YAP) in early liver development (YAPKO) leads to an Alagille syndrome-like phenotype, with failure of intrahepatic bile duct development, severe cholestasis, and chronic hepatocyte adaptations to reduce liver injury. TAZ, a paralog of YAP, was significantly upregulated in YAPKO hepatocytes and interacted with TEA domain family member (TEAD) transcription factors, suggesting possible compensatory activity.

Methods: We deleted both Yap1 and Wwtr1 (which encodes TAZ) during early liver development using the Foxa3 promoter to drive Cre expression, similar to YAPKO mice, resulting in YAP/TAZ double knockout (DKO) and YAPKO with TAZ heterozygosity (YAPKO TAZHET).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!