Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of multidimensional forced-choice (MFC) items to assess non-cognitive traits such as personality, interests and values in psychological tests has a long history, because MFC items show strengths in preventing response bias. Recently, there has been a surge of interest in developing item response theory (IRT) models for MFC items. However, nearly all of the existing IRT models have been developed for MFC items with binary scores. Real tests use MFC items with more than two categories; such items are more informative than their binary counterparts. This study developed a new IRT model for polytomous MFC items based on the cognitive model of choice, which describes the cognitive processes underlying humans' preferential choice behaviours. The new model is unique in its ability to account for the ipsative nature of polytomous MFC items, to assess individual psychological differentiation in interests, values and emotions, and to compare the differentiation levels of latent traits between individuals. Simulation studies were conducted to examine the parameter recovery of the new model with existing computer programs. The results showed that both statement parameters and person parameters were well recovered when the sample size was sufficient. The more complete the linking of the statements was, the more accurate the parameter estimation was. This paper provides an empirical example of a career interest test using four-category MFC items. Although some aspects of the model (e.g., the nature of the person parameters) require additional validation, our approach appears promising.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bmsp.12303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!