Hippocampal-cortical networks play an important role in neurocognitive development. Applying the method of Connectivity-Based Parcellation (CBP) on hippocampal-cortical structural covariance (SC) networks computed from T1-weighted magnetic resonance images, we examined how the hippocampus differentiates into subregions during childhood and adolescence (N = 1105, 6-18 years). In late childhood, the hippocampus mainly differentiated along the anterior-posterior axis similar to previous reported functional differentiation patterns of the hippocampus. In contrast, in adolescence a differentiation along the medial-lateral axis was evident, reminiscent of the cytoarchitectonic division into cornu ammonis and subiculum. Further meta-analytical characterization of hippocampal subregions in terms of related structural co-maturation networks, behavioural and gene profiling suggested that the hippocampal head is related to higher order functions (e.g. language, theory of mind, autobiographical memory) in late childhood morphologically co-varying with almost the whole brain. In early adolescence but not in childhood, posterior subicular SC networks were associated with action-oriented and reward systems. The findings point to late childhood as an important developmental period for hippocampal head morphology and to early adolescence as a crucial period for hippocampal integration into action- and reward-oriented cognition. The latter may constitute a developmental feature that conveys increased propensity for addictive disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185869 | PMC |
http://dx.doi.org/10.1016/j.pneurobio.2023.102447 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!