Tire wear particles (TWPs) are one of the environment's most important emission sources of microplastics. In this work, chemical identification of these particles was carried out in highway stormwater runoff through cross-validation techniques for the first time. Optimization of a pre-treatment method (i.e., extraction and purification) was provided to extract TWPs, avoiding their degradation and denaturation, to prevent getting low recognizable identification and consequently underestimates in the quantification. Specific markers were used for TWPs identification comparing real stormwater samples and reference materials via FTIR-ATR, Micro-FTIR, and Pyrolysis-gas-chromatography-mass spectrometry (Pyr-GC/MS). Quantification of TWPs was carried out via Micro-FTIR (microscopic counting); the abundance ranged from 220,371 ± 651 TWPs/L to 358,915 ± 831 TWPs/L, while the higher mass was 39,6 ± 9 mg TWPs/L and the lowest 31,0 ± 8 mg TWPs/L. Most of the TWPs analyzed were less than 100 μm in size. The sizes were also confirmed using a scanning electron microscope (SEM), including the presence of potential nano TWPs in the samples. Elemental analysis via SEM supported that a complex mixture of heterogeneous composition characterizes these particles by agglomerating organic and inorganic particles that could derive from brake and road wear, road pavement, road dust, asphalts, and construction road work. Due to the analytical lack of knowledge about TWPs chemical identification and quantification in scientific literature, this study significantly contributes to providing a novel pre-treatment and analytical methodology for these emerging contaminants in highway stormwater runoff. The results of this study highlight the uttermost necessity to employ cross-validation techniques, i.e., FTIR-ATR, Micro-FTIR, Pyr-GC/MS, and SEM for the TWPs identification and quantification in the real environmental samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.121511 | DOI Listing |
Phytomedicine
December 2024
State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; Chinese Pharmacopoeia Commission, Beijing 100061, China. Electronic address:
Background: Owing to high sensitivity and ability for absolute quantification, the droplet digital polymerase chain reaction (ddPCR) is widely used for viral and bacterial detection. However, few studies have been conducted on the application of ddPCR to identify the original plant species used in traditional Chinese medicine and Chinese patent medicine.
Purpose: In this study, we investigated the feasibility of using ddPCR to differentiate between Notopterygium incisum and N.
Alzheimers Dement
December 2024
Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Background: Identification of cell-type vulnerability in Alzheimer's Disease (AD) is critical to the clinical development of targeted treatments. Neurodegeneration of the subiculum (SUB) is an early biomarker of AD, but it is unknown if specific SUB cell-types are susceptible to AD neurodegeneration. In the 5xFAD mouse model, significant cell loss occurs within the SUB by 8 months of age.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California San Diego, La Jolla, CA, USA.
Background: Our data from several clinical trials of individuals with asymptomatic AD demonstrates that plasma Aβ42/40 quantification by mass spectrometry can serve as a reliable biomarker for predicting elevated brain amyloid as detected by PET. We investigated how adding plasma p-tau measures to our plasma Aβ42/40 algorithm to streamline identification of eligible participants and reduce burden and trial cost. To determine if the addition of plasma p-tau181 and/or p-tau217 concentrations can improve plasma Aβ42/40 algorithms to correctly identify participants with amyloid burden of >20 centiloids with the NAV4694 tracer among individuals screening for participation in the AHEAD preclinical AD trial.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Life Sciences, GITAM (Deemed to be University), GITAM School of Science, Visakhapatnam, Andhra Pradesh, 530 045, India.
Background: The oral cavity is a complex environment which harbours the second largest and most diverse microflora after the gastrointestinal tract. The bacteriome in the oral cavity plays a pivotal role in promoting the health and well-being of human beings. Gingivitis, an inflammation of the gingival tissue, arises due to plaque accumulation on the teeth, often leads to periodontitis.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
Background: Systemic light chain amyloidosis is a rare and debilitating disease, especially for which initially presented with digestive tract involvement. Myocardial amyloidosis is highly aggressive with generally poor prognosis and often resulted in missed diagnosis or misdiagnosis with routine examination tools. Multimodality imaging play an important role in diagnosing the amyloidosis effect on multiple organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!