AI Article Synopsis

  • Dibutyl phthalate (DBP), a common plasticizer found in products like face masks, poses health risks as it leaches into the environment and affects mitochondrial function in cells.
  • Exposure to DBP in zebrafish cells led to increased mitochondrial oxidative stress, decreased membrane potential, and structural damage, ultimately impairing ATP synthesis.
  • The study highlights the genotoxic effects on mitochondrial DNA and connects these findings to broader concerns about phthalate contamination and potential health risks in humans.

Article Abstract

Dibutyl phthalate (DBP) is commonly applied plasticizer in plastic products such as face masks, easily leaches or migrates into environment and its widespread contamination posed profound health risks. Further concerns rise regarding to the toxicity of DBP at subcellular level, while little is known about the ranging effects on mitochondrial susceptibility. Present study investigated the mitochondrial impairments with implicated cell death upon DBP exposure on zebrafish cells. Elevated mitochondrial oxidative stress reduced its membrane potential and count, enhanced fragmentation, and impaired ultrastructure that showed smaller size and cristae rupture. Afterwards, the critical function of ATP synthesis was damaged and the stabilized binding capacity between DBP with mitochondrial respiratory complexes was simulated by the molecular docking. And the top pathways enrichment of mitochondrion and metabolism by transcriptome analyses verified the mitochondrial dysfunction that indicated the human diseases risks. The mitochondrial DNA (mtDNA) replication and transcription with DNA methylation modifications were also disrupted, reflecting the genotoxicity on mtDNA. Moreover, the activated autophagy and apoptosis underlying mitochondrial susceptibility integrated into cellular homeostasis changes. These findings provide the first systemic evidence broadening and illustrating the mitochondrial toxicity of DBP exposure on zebrafish model that raise concern on phthalates contamination and ecotoxicological evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138510DOI Listing

Publication Analysis

Top Keywords

exposure zebrafish
12
mitochondrial
9
mitochondrial toxicity
8
dibutyl phthalate
8
toxicity dbp
8
mitochondrial susceptibility
8
dbp exposure
8
dbp
5
insight health
4
health risk
4

Similar Publications

Background: Inactivation of infectious liquid waste can be performed by different means, including autoclaving or chemical inactivation. Autoclaving is most widely used, but cannot always be implemented, so that chemical inactivation is a possible alternative. However, its efficacy has to be proven by in-house validation.

View Article and Find Full Text PDF

Neurotoxic effects of citronellol induced by the conversion of kynurenine to 3-hydroxykynurenine.

J Hazard Mater

December 2024

Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea. Electronic address:

Citronellol is widely utilized in consumer products, including cosmetics, fragrances, and household items. However, despite being considered a relatively safe chemical, the health effects and toxicity mechanisms associated with exposure to high concentrations of citronellol, based on product content, remain inadequately understood. Here, we aimed to analyze the neurological effects of citronellol in zebrafish larvae using behavioral and histological analyses and elucidate the mechanisms underlying its neurotoxicity in vivo.

View Article and Find Full Text PDF

Degradation of AFB in edible oil by aptamer-modified TiO composite photocatalytic materials: Selective efficiency, degradation mechanism and toxicity.

Food Chem

December 2024

Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China. Electronic address:

Most of the excessive aflatoxins in peanut oil are present at lower levels, and few photocatalysts have been reported for degrading low concentrations of aflatoxin B (AFB). This study employed aptamer-modified magnetic graphene oxide/titanium dioxide (MGO/TiO-aptamer) photocatalysts to degrade low concentrations of AFB in peanut oil, thoroughly investigating their selective efficiency, degradation mechanism, and product toxicity. The results indicated that the modification of aptamers on the surface of photocatalytic materials can enhance the selectivity of photocatalysts for AFB in peanut oil.

View Article and Find Full Text PDF

Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio.

Sci Rep

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.

View Article and Find Full Text PDF

Novel peptide inhibitor of matrix Metalloproteinases-1 from pufferfish skin collagen hydrolysates and its potential Photoprotective activity via the MAPK/AP-1 signaling pathway.

J Photochem Photobiol B

December 2024

Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, China. Electronic address:

Takifugu bimaculatus, a pufferfish species farmed in Fujian Province, is known for its non-toxic flesh and collagen-rich skin. We identified a novel collagen-derived matrix metalloproteinase 1 (MMP-1) inhibitory peptide, from T. bimaculatus skin with potent anti-photoaging properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!