Signaling of nicotinic acetylcholine receptors in mononuclear phagocytes.

Pharmacol Res

Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany; German Centre for Lung Research (DZL), Giessen, Germany; Cardiopulmonary Institute (CPI), Giessen, Germany. Electronic address:

Published: May 2023

Nicotinic acetylcholine receptors are not only expressed by the nervous system and at the neuro-muscular junction but also by mononuclear phagocytes, which belong to the innate immune system. Mononuclear phagocyte is an umbrella term for monocytes, macrophages, and dendritic cells. These cells play pivotal roles in host defense against infection but also in numerous often debilitating diseases that are characterized by exuberant inflammation. Nicotinic acetylcholine receptors of the neuronal type dominate in these cells, and their stimulation is mainly associated with anti-inflammatory effects. Although the cholinergic modulation of mononuclear phagocytes is of eminent clinical relevance for the prevention and treatment of inflammatory diseases and neuropathic pain, we are only beginning to understand the underlying mechanisms on the molecular level. The purpose of this review is to report and critically discuss the current knowledge on signal transduction mechanisms elicited by nicotinic acetylcholine receptors in mononuclear phagocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2023.106727DOI Listing

Publication Analysis

Top Keywords

nicotinic acetylcholine
16
acetylcholine receptors
16
mononuclear phagocytes
16
receptors mononuclear
8
mononuclear
5
signaling nicotinic
4
acetylcholine
4
receptors
4
phagocytes
4
phagocytes nicotinic
4

Similar Publications

In recent decades, the common and the tropical bed bugs have experienced a resurgence in many parts of the world. The evolution of insecticide resistance in bed bug populations is considered a significant factor contributing to this resurgence. We analyzed samples of Cimex lectularius L.

View Article and Find Full Text PDF

Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage and inhibition of nicotinic acetylcholine receptors, resulting in life-threatening neurotoxicity. At present, the only available treatments for snakebites consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs.

View Article and Find Full Text PDF

Background: Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous malignancy with neuroendocrine differentiation. Several molecular pathways have been implicated in MCC development and multiple cell-of-origin candidates have been proposed, including neural crest cells, which express acetylcholine receptors (AChRs). The role of nicotinic acetylcholine receptors (nAChRs) in MCC has not been explored.

View Article and Find Full Text PDF

Background: Myasthenia gravis is an autoimmune neuromuscular disease primarily caused by autoantibodies against nicotinic acetylcholine receptors (AChRs) at the neuromuscular junction. However, extrathymic malignancies need to be considered in the elderly population.

Purpose: Although thymic malignancy is the most common tumour association, several extrathymic malignancies complicated with myasthenia gravis have been reported.

View Article and Find Full Text PDF

The nicotinic acetylcholine receptor (nAChR) is a pentameric ligand-gated ion channel (pLGIC) commonly used as a model for receptors belonging to the Cys-loop superfamily. Members of pLGICs are standardly used in numerous toxicological investigations e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!