Rare earth elements (REEs) have attracted much attention in recent decades due to their growing applications in high-tech industries. Coal and acid mine drainage (AMD) are considered promising alternative sources due to their high concentrations of REEs. Here, AMD with anomalous REEs concentrations was reported in a coal-mine area in northern Guizhou, China. The AMD had a total concentration as high as 22.3 mg/l, suggesting that regional coal seams may be enriched with REEs. Five segments from borehole samples, which contained coal, rocks from the roof and floor of the coal seam were collected from the coal mine site to investigate the abundance, enrichment, and occurrence of REE-bearing minerals. Elemental analysis showed that the REE contents in the coal, mudstone and limestone from the coal seam roof, and claystone from the floor (all dating to the late Permian) varied greatly, with averages of 388, 549, 60.1 mg/kg and 2030 mg/kg, respectively. Encouragingly, the REEs content in the claystone is over an order of magnitude higher than the average content reported in most other coal-based materials. The enrichment of REEs resources in regional coal seams is particularly associated with the contribution of REEs in the claystone that comprises the coal seam floor, rather than just the coal, as considered in previous studies. The minerals in these claystone samples were dominated by kaolinite, pyrite, quartz and anatase. Two types of REE-bearing minerals, bastnaesite and monazite, were detected in the claystone samples by SEM-EDS analysis, and they were found to be adsorbed by a large amount of clay minerals, mainly kaolinite. Additionally, the results of chemical sequential extraction also confirmed that the majority of the REEs in the claystone samples are mainly in their ion-exchangeable, metal oxide and acid-soluble forms, which are viable prospects for REE extraction. Therefore, the anomalous concentrations of REEs and most of them are in extractable phases, which demonstrates that the claystone from the floor of the late Permian coal seam should be a potential secondary source of REEs. Future studies will further consider the extraction model and the economic benefits of REEs from the floor claystone samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163051DOI Listing

Publication Analysis

Top Keywords

coal seam
16
claystone samples
16
rare earth
12
late permian
12
coal
12
coal seams
12
rees
11
anomalous concentrations
8
earth elements
8
acid mine
8

Similar Publications

Seepage experiences were conducted on coal samples with diverse levels of moisture content, gas pressure, and effective stress to investigate how gas seepage in a coal seam is affected by the interaction of gas, water, and stress. The results of the study revealed the intricate relationship between these factors and their impact on the permeability and seepage behavior of coal. The findings indicate that, with increasing gas pressure, the permeability of coal specimens containing different levels of moisture varies distinctly.

View Article and Find Full Text PDF

In the risk assessment of water inrush from coal floors, the amount of measured data obtained through on-site testing is small and random, which limits the prediction accuracy and generalizability of a model based on measured data. Using the distribution characteristics of the measured data and mega-trend diffusion theory, we propose a virtual sample enhancement method based on class distribution mega-trend diffusion technology (CDMTD) and introduce constraints on the class distribution of influencing factors. This method was used to generate virtual samples and enhance the measured database.

View Article and Find Full Text PDF

Coal is a critical energy resource for global industries, and its extraction from open-pit mines requires effective slope stability management to ensure safe and efficient operations. This study evaluates the slope stability of the Tolay open-pit coal mine in Ethiopia, located in the Jimma zone, where geological conditions, including basalt, mudstone, and weathered soil layers, influence slope behaviour. The primary objective was to assess slope stability and recommend optimization strategies for safer mining.

View Article and Find Full Text PDF

The extraction of coal seams with high gas content and low permeability presents significant challenges, particularly due to the extended period required for gas extraction to meet safety standards and the inherently low extraction efficiency. Hydraulic fracturing technology, widely employed in the permeability enhancement of soft and low-permeability coal seams, serves as a key intervention. This study focuses on the high-rank raw coal from the No.

View Article and Find Full Text PDF

The purpose of this research is to use the Concentration-Distance (C-D) fractal model to determine the relationship between the concentrations of ƩREEs and faults in coal seams of the North Kochakali coal deposit. For this purpose, three Concentration-Distance fractal models including: ƩREEC-DDF, ƩREEC-DSF, and ƩREEC- DTF were created based on ƩREEs concentrations and the distance from dextral, sinistral, and thrust faults, respectively. Four different geochemical populations were obtained according to fractal diagrams.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!