A G2000 glass scintillator (G2000-SC) was used to determine the carbon profile and range of a 290-MeV/n carbon beam used in heavy-ion therapy because it was sensitive enough to detect single-ion hits at hundreds of mega electron Volts. An electron-multiplying charge-coupled device camera was used to detect the ion luminescence generated during the irradiation of G2000-SC with the beam. The resulting image showed that the position of the Bragg peak can be determined. The beam passes through the 112-mm-thick water phantom and stops 5.73 ± 0.03 mm from the incident side to the G2000-SC. Additionally, the location of the Bragg peak was simulated when irradiating G2000-SC with the beam using the Monte Carlo code particle and heavy ion transport system (PHITS). Simulation results show that the incident beam stops at 5.60 mm after entering G2000-SC. The beam stop location obtained from images and the PHITS code is defined at 80% distal fall-off from the Bragg peak position. Consequently, G2000-SC provided effective profile measurements of therapeutic carbon beams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2023.110753 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!