Introduction: Human herpes virus-6 (HHV-6) is a ubiquitous virus but can lead to deleterious clinical manifestations due to its predilection for the pediatric central nervous system. Despite significant literature describing its common clinical course, it is rarely considered as a causative agent in CSF pleocytosis in the setting of craniotomy and external ventricular drainage device. Identification of a primary HHV-6 infection allowed for timely treatment with an antiviral agent along with earlier discontinuation of antibiotic regimen and expedited placement of a ventriculoperitoneal shunt.
Case Presentation: A two-year-old girl presented with 3 months of progressive gait disturbance and intranuclear ophthalmoplegia. Following craniotomy for removal of 4th ventricular pilocytic astrocytoma and decompression of hydrocephalus, she suffered a prolonged clinical course due to persistent fevers and worsening CSF leukocytosis despite multiple antibiotic regimens. The patient was admitted to the hospital during the COVID-19 pandemic and isolated with her parents in the intensive care unit with strict infection control measures. FilmArray Meningitis/Encephalitis (FAME) panel ultimately detected HHV-6. Clinical confirmation of HHV-6-induced meningitis was proposed given improvement in CSF leukocytosis and fever reduction following the initiation of antiviral medications. Pathologic analysis of brain tumor tissue failed to show HHV-6 genome positivity, suggesting a primary peripheral etiology of infection.
Conclusion: Here, we present the first known case of HHV-6 infection detected by FAME following intracranial tumor resection. We propose a modified algorithm for persistent fever of unknown origin which may decrease symptomatic sequelae, minimize additional procedures, and shorten length of ICU stay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000530114 | DOI Listing |
Zhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China.
Viruses
January 2025
Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
In this narrative review, we explore the burden and risk factors of various herpesvirus infections in patients receiving chimeric antigen receptor T-cell (CAR-T) therapy or bispecific antibodies (BsAb) for the treatment of hematologic malignancies. Antiviral prophylaxis for herpes simplex/varicella zoster viruses became part of the standard of care in this patient population. Breakthrough infections may rarely occur, and the optimal duration of prophylaxis as well as the timing of recombinant zoster immunization remain to be explored.
View Article and Find Full Text PDFPathogens
January 2025
Department of Medical Microbiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey.
Rubella Virus, Cytomegalovirus (CMV), Herpes Simplex Virus-2 (HSV-2), Hepatitis B (HBV) and Hepatitis C virus (HCV) can cause serious fetal disease. The seropositivity rates of these agents vary among countries and geographic regions. This study aimed to analyze the prevalence rates and diagnostic methods used in studies investigating the seroprevalence of viral pathogens in the TORCH group among pregnant women in Turkey between 2005 and 2024.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
The Roger Williams Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London & Foundation for Liver Research, London SE5 9NT, UK.
Bacterial translocation-induced inflammation and immune dysfunction are recognised factors contributing to the pathogenesis of primary biliary cholangitis (PBC). However, the specific involvement of interferons (IFNs) and soluble checkpoints (sol-CRs) in shaping the immune landscape in PBC patients remains unexplored. Furthermore, the influence of ursodeoxycholic acid (UDC) on these immune mediators is unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908.
Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!