Sensitive and accurate determination of tumor-derived exosomes from complicated biofluids is an important prerequisite for early tumor diagnosis through exosome-based liquid biopsy. Herein, a label-free fluorescence immunoassay protocol for ultrasensitive detection of exosomes was developed by engineering substantial dimerized guanine-quadruplex (Dimer-G4) signal units via in situ cutting-mediated exponential rolling circle amplification (CM-ERCA). First, exosomes were captured and enriched via immunomagnetic separation. Then, molecular recognition was built by the formation of antibody-aptamer sandwich immunocomplex through the specific binding of the designed aptamer-primers with the targeted exosomes. The accuracy of exosome detection was significantly improved by the specific recognition of two typical exosomal protein markers simultaneously. Eventually, in situ CM-ERCA was triggered by a perfect match between the multifunctional circular DNA template and the aptamer-primer on exosomal surface. Amplicons of CM-ERCA loaded with Dimer-G4 were exponentially accumulated during continuous cyclic amplification, dramatically lighting up the thioflavin T (ThT) and generating substantial Dimer-G4 signal units. As a result, ultrasensitive detection of exosomes with the detection limit down to 2.4 × 10 particles/mL was achieved due to the fluorescence enhancement of substantial Dimer-G4 signal units, which is ahead of most of available fluorescence-based methods reported currently. In addition, the intense fluorescence emission and favorable anti-interference of the proposed immunoassay supports identification of exosomes direct in human serums, overcoming the limitations of conventional G4/ThT in serum analysis and revealing its potential for exosome-based liquid biopsy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341098DOI Listing

Publication Analysis

Top Keywords

signal units
16
detection exosomes
12
dimer-g4 signal
12
substantial dimerized
8
cutting-mediated exponential
8
exponential rolling
8
rolling circle
8
circle amplification
8
exosome-based liquid
8
liquid biopsy
8

Similar Publications

Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.

View Article and Find Full Text PDF

Current state-of-the-art tools for analysing extracellular vesicles (EVs) offer either highly sensitive but unidimensional bulk measurements of EV components, or high-resolution multiparametric single-particle analyses which lack standardization and appropriate reference materials. This limits the accuracy of the assessment of marker abundance and overall marker distribution amongst individual EVs, and finally, the understanding of true EV heterogeneity. In this study, we aimed to define the standardized operating procedures and reference material for fluorescent characterization of EVs with two commonly used EV analytical platforms-nanoparticle tracking analysis (NTA) and nano-flow cytometry (nFCM).

View Article and Find Full Text PDF

Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel.

Anal Chim Acta

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.

View Article and Find Full Text PDF

Deep proximal gradient network for absorption coefficient recovery in photoacoustic tomography.

Phys Med Biol

January 2025

North China Electric Power University - Baoding Campus, North China Electric Power University, Baoding, Hebei Province, P.R.China, Baoding, Hebei, 071003, CHINA.

Objective: The optical absorption properties of biological tissues in photoacoustic tomography are typically quantified by inverting acoustic measurements. Conventional approaches to solving the inverse problem of forward optical models often involve iterative optimization. However, these methods are hindered by several challenges, including high computational demands, the need for regularization, and sensitivity to both the accuracy of the forward model and the completeness of the measurement data.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!