Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alginate and gelatin are natural macromolecules used to formulate biocompatible drug delivery systems. Hydroxyapatite (HA) is an osteophilic ceramic used to prepare bone scaffolds. The current study aimed at preparing and characterizing HA, zinc-doped HA, and 5-fluorouracil(5-FU)-loaded alginate-gelatin-based hydrogel scaffolds using different crosslinking solutions. 5-FU incorporation efficiency, in-vitro drug release, antitumor bioassays, FTIR, X-ray-diffraction (XRD), High-Resolution Transmission, and Scanning-Electron Microscope (HR-TEM and SEM) studies were conducted. XRD showed the incorporation of Zn into HA structure with a deformity in HA crystal lattice and inhibited crystal growth. FTIR-spectra represented the characteristic bands corresponding to HA structure. HR-TEM showed a decreased HA crystal size and rod-like crystallites that increased with increasing zinc content. Zn content and 5-FU-loading caused significant effects on the scaffolds' thickness (p-value = 0.021 and 0.035, respectively). Burst 5-FU release within 10-15 min followed by 100 % release within 4 h was observed. Zinc content showed a significant positive effect on the cytotoxicity% of the blank and drug-loaded scaffolds. XRD and FTIR studies revealed that 5-FU was completely incorporated into the hydrogel with no chemical interaction. SEM-imaging showed interconnected pores and needle-shaped drug particles. The prepared formulations showed promising physico-chemical properties for targeted delivery of 5-FU in the form of biocompatible bone scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124147 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!