A method for conversion of polyethylene terephthalate (PET) waste into porous carbon material is proposed. The recycling of PET bottle waste includes the stages of low-temperature hydrolysis of the polymer and subsequent pyrolysis at 800 °C. To provide PET hydrolysis at ∼150 °C and atmospheric pressure, the polymer was pre-dissolved in dimethyl sulfoxide and then an aqueous solution of potassium hydroxide was added. The potassium terephthalate formed as a result of the alkaline hydrolysis of PET allows the carbon-containing precursor to be preserved for further activation to temperatures beyond 600 °C. The proposed method leads to the formation of a porous carbon material, increasing the yield of carbon residue to 25 wt%, which is higher compared to the yield of carbon residue in the direct pyrolysis of PET. The obtained porous carbon is characterized by graphite-like structure and specific surface area of ∼1100 m g. It has been shown that PET-derived carbon material can be used to remove pollutants from aqueous media. The adsorption properties of the carbon material were demonstrated by adsorption of methylene blue from an aqueous solution. The capacity of the carbon material was found to be 443 mg g.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2023.03.019 | DOI Listing |
Sensors (Basel)
December 2024
Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
The MEMS gas sensor is one of the most promising gas sensors nowadays due to its advantage of small size, low power consumption, and easy integration. It has been widely applied in energy components, portable devices, smart living, etc. The performance of the gas sensor is largely determined by the sensing materials, as well as the fabrication methods.
View Article and Find Full Text PDFPharmaceutics
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Skłodowskiej St., 41-819 Zabrze, Poland.
: Cancer remains one of the leading causes of death worldwide, and thus, there is a need for the development of innovative and more effective treatment strategies. The aim of the study was to evaluate two types of nanoparticles-nanospheres and micelles-obtained from PLA-based polymers to discover their potential for delivering four types of phenothiazine derivatives. : The morphology, drug-loading properties, cytocompatibility, hemolytic properties and anticancer activity were analyzed.
View Article and Find Full Text PDFPharmaceutics
November 2024
iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal.
: The development of innovative materials for disease diagnostics and therapeutics is a fast-growing area of scientific research. In this work, we report the development of innovative hydrogels incorporating carbon dots (Cdots) for bioimaging purposes. : The Cdots were prepared using a sustainable and low-cost process, starting with an underused fiber from the Brazilian semiarid region.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
The coagulation of fresh latex is one of the critical processes that impacts rubber quality during natural rubber processing. Constitutive relationships are the basis for the study of the mechanical properties of rubber materials and serve as a prerequisite for material simulation studies. However, studies on the effect of different coagulation methods on natural rubber constitutive relationships have yet to be carried out, and the current models used for natural rubber constitutive relationships need to be improved.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Adamant Composites Ltd., Agias Lavras & Stadiou, 26504 Patras, Greece.
Hydrogen, as a zero-emission fuel, produces only water when used in fuel cells, making it a vital contributor to reducing greenhouse gas emissions across industries like transportation, energy, and manufacturing. Efficient hydrogen storage requires lightweight, high-strength vessels capable of withstanding high pressures to ensure the safe and reliable delivery of clean energy for various applications. Type V composite pressure vessels (CPVs) have emerged as a preferred solution due to their superior properties, thus this study aims to predict the performance of a Type V CPV by developing its numerical model and calculating numerical burst pressure (NBP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!