N-glycosylation reinforces interaction of immune checkpoint TIM-3 with a small molecule ligand.

Comput Biol Chem

University of Lille, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, F-59006 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; OncoWitan, Lille (Wasquehal), 59290, France. Electronic address:

Published: June 2023

N-glycosylation of eukaryotic proteins plays roles in protein folding, trafficking, and signal transduction. The biological influence of the process is well understood, whereas the pharmacological impact of protein N-glycosylation is not well under discerned. The role of N-glycosylation on drug binding to protein has been rarely studied. We have modeled the influence of a bi-antennary N-glycan introduced at position N78 on the immune checkpoint TIM-3 (T cell immunoglobulin domain and mucin domain-containing molecule 3) on the interaction with a selective drug antagonist. The bulky N-glycan introduced at the consensus sequence Asn-Val-Thr has no influence on drug binding when the glycan adopts an extended conformation. But in a folded conformation, the glycan can interact directly with the triazoloquinazolinone derivative so as to further stabilize the drug-TIM-3 complex. The non-fucosylated glycan at position N78 markedly consolidates the drug interaction, via an additional H-bond interaction with the α3-mannose residue. It provides a gain of empirical potential energy of interaction (ΔE) of about 30 %. The presence of a more rigid fucosylated N-glycan is a little less favorable, with a gain of ΔE of about 20 %. The folded N-glycan appears to protect the ligand bound to the protein cavity, with the tricyclic core of the heterocyclic molecule sandwiched between two indole rings of tryptophan residues. Similar results were obtained when using a biantennary disialyl N-glycan with a bisecting GlcNAc residue and a tetra-antennary N-glycan. The molecular models illustrate the drug-stabilizing capacity of a bulky N-glycan positioned at a validated glycosylation site (N78 corresponding to N100 for the full-length protein). The modeling approach is useful to delineate further the role of the N-glycan of the immune checkpoint TIM-3 in interaction with small molecule ligands, and to guide the design of more potent compounds. The approach is transposable to other proteins to better comprehend the influence of N-glycans on drug-receptor interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2023.107852DOI Listing

Publication Analysis

Top Keywords

immune checkpoint
12
checkpoint tim-3
12
small molecule
8
drug binding
8
n-glycan
8
n-glycan introduced
8
position n78
8
bulky n-glycan
8
interaction
6
protein
5

Similar Publications

Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.

View Article and Find Full Text PDF

Copper Chelate Targeting Externalized Phosphatidylserine Inhibits PD-L1 Expression and Enhances Cancer Immunotherapy.

J Am Chem Soc

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China.

Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies.

View Article and Find Full Text PDF

Background: Fulminant type 1 diabetes mellitus (FT1DM) is a severe subtype of type 1 diabetes characterized by rapid onset, metabolic disturbances, and irreversible insulin secretion failure. Recent studies have suggested associations between FT1DM and certain medications, warranting further investigation.

Objectives: This study aims to analyze drugs associated with an increased risk of FT1DM using the Food and Drug Administration Adverse Event Reporting System (FAERS) database.

View Article and Find Full Text PDF

: Immune-mediated colitis (IMC) is a common immune-related adverse event during immune checkpoint inhibitor (ICI) therapy. This case series and review aimed to highlight atypical cases of IMC and explore the potential of PET/CT to predict imminent ICI colitis. : Through a descriptive, retrospective study at a tertiary cancer center, we identified adult patients receiving ICIs for any cancer between 2010 and 2022 who also underwent PET/CT for routine cancer surveillance during this time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!