Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Creatinine is a well-stablished biomarker for kidney malfunctions and for normalization parameter of urinary quantitative information. Recently, metabolic studies have been discovering other functionalities for creatinine tests in human urine and blood serum. In this work we present an enhanced capillary electrophoresis (CE) based protocol for determination of creatinine. CE is a high-throughput separation technique that have been getting attention through the last decades and might be considered to be adopted as an analytical instrumentation for clinical purposes. In the proposed method, we performed a short injection program with on-column addition of internal standard. Additionally, the method allows a simultaneous screening of non-proteinogenic amino acids that could be considered for metabolomics purposes. We design a pilot study that successfully estimated the creatinine value in 100 urine samples with (2.85 ± 1.78) mg dL LOD; (8.24 ± 5.93) mg dL LOQ and 82.4% accuracy. Considering that serum creatinine is also included in the clinical laboratory routines for estimated Glomerular Filtration Rate dosage, the method was complementary applied to 10 blood serum samples, which resulted in a model with (0.4 ± 0.2) mg dL LOD; (2.0 ± 0.6) mg dL LOQ and 83.8% of accuracy. All results were in agreement with reference values. The proposed method promotes a great analytical frequency and reproducibility with enhanced specificity compared with the ongoing protocol by Jaffe's reaction, thereby proving to be useful as an alternative for creatinine exams that might help complete a diagnosis of a series of health-related issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.124465 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!