Investigating the bioaccumulation potential of anionic organic compounds using a permanent rainbow trout liver cell line.

Environ Int

Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland. Electronic address:

Published: April 2023

Permanent rainbow trout (Oncorhynchus mykiss) cell lines represent potential in vitro alternatives to experiments with fish. We here developed a method to assess the bioaccumulation potential of anionic organic compounds in fish, using the rainbow trout liver-derived RTL-W1 cell line. Based on the availability of high quality in vivo bioconcentration (BCF) and biomagnification (BMF) data and the substances' charge state at physiological pH, four anionic compounds were selected: pentachlorophenol (PCP), diclofenac (DCF), tecloftalam (TT) and benzotriazol-tert-butyl-hydroxyl-phenyl propanoic acid (BHPP). The fish cell line acute toxicity assay (OECD TG249) was used to derive effective concentrations 50 % and non-toxic exposure concentrations to determine exposure concentrations for bioaccumulation experiments. Bioaccumulation experiments were performed over 48 h with a total of six time points, at which cell, medium and plastic fractions were sampled and measured using high resolution tandem mass spectrometry after online solid phase extraction. Observed cell internal concentrations were over-predicted by K-derived predictions while pH-dependent octanol-water partitioning (D) and membrane lipid-water partitioning (D) gave better predictions of cell internal concentrations. Measured medium and cell internal concentrations at steady state were used to calculate RTL-W1-based BCF, which were compared to D- or D-based model approaches and in vivo data. With the exception of PCP, the cell-derived BCF best compared to D-based model predictions, which were higher than predictions based on D. All methods predicted the in vivo BCF for diclofenac well. For PCP, the cell-derived BCF was lowest although all BCF predictions underestimated the in vivo BCF by ≥ 1 order of magnitude. The RTL-W1 cells, and all other prediction methods, largely overestimated in vivo BMF, which were available for PCP, TT and BHPP. We conclude that the RTL-W1 cell line can supplement BCF predictions for anionic compounds. For BMF estimations, however, in vitro-in vivo extrapolations need adaptation or a multiple cell line approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2023.107798DOI Listing

Publication Analysis

Top Keywords

rainbow trout
12
cell internal
12
internal concentrations
12
cell
10
bioaccumulation potential
8
potential anionic
8
anionic organic
8
organic compounds
8
permanent rainbow
8
rtl-w1 cell
8

Similar Publications

Aclonifen is a diphenyl ether herbicide being included in the list of priority substances. Nevertheless, the data related to its sublethal effects on fish are limited. Therefore, the present study has been carried out to investigate the toxic effects of aclonifen in juvenile following 24, 48, 72 and 96 hours of application to sublethal concentrations of 12.

View Article and Find Full Text PDF

Understanding the mechanisms that underlie the adaptive response of ectotherms to rising temperatures is key to mitigate the effects of climate change. We assessed the molecular and physiological processes that differentiate between rainbow trout (Oncorhynchus mykiss) with high and low tolerance to acute thermal stress. To achieve our goal, we used a critical thermal maximum trial in two strains of rainbow trout to elicit loss of equilibrium responses to identify high and low tolerance fish.

View Article and Find Full Text PDF

Salmonids, classified as physostomous fish, maintain buoyancy by ingesting air to inflate their swim bladders. Long-term submergence has been shown to cause body imbalance and reduced growth performance in these fish. Previous studies have demonstrated that extended photoperiod can promote growth in salmonids.

View Article and Find Full Text PDF

In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters.

View Article and Find Full Text PDF

Non-classical MHC class I genes which, compared to classical MHC class I, are typically less polymorphic and have more restricted expression patterns are attracting interest because of their potential to regulate immune responses to various pathogens. In salmonids, among the numerous non-classical MHC class I genes identified to date, L lineage genes, including Sasa- and , are differentially induced in response to microbial challenges. In the present study, we show that while transcription of both and are induced in response to SAV3 infection the transcriptional induction patterns are distinct for each gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!