The exocrine pancreas secretes fluid and digestive enzymes in response to parasympathetic release of acetylcholine (ACh) via the vagus nerve and the gut hormone cholecystokinin (CCK). Both secretion of fluid and exocytosis of secretory granules containing enzymes and zymogens are dependent on an increase in the cytosolic [Ca ] in acinar cells. It is thought that the specific spatiotemporal characteristics of the Ca signals are fundamental for appropriate secretion and that these properties are disrupted in disease states in the pancreas. While extensive research has been performed to characterize Ca signalling in acinar cells, this has exclusively been achieved in ex vivo preparations of exocrine cells, where it is difficult to mimic physiological conditions. Here we have developed a method to optically observe pancreatic acinar Ca signals in vivo using a genetically expressed Ca indicator and imaged with multi-photon microscopy in live animals. In vivo, acinar cells exhibited baseline activity in fasted animals, which was dependent on CCK1 receptors (CCK1Rs). Both stimulation of intrinsic nervous input and administration of systemic CCK induced oscillatory activity in a proportion of the cells, but the maximum frequencies were vastly different. Upon feeding, oscillatory activity was also observed, which was dependent on CCK1Rs. No evidence of a vago-vagal reflex mediating the effects of CCK was observed. Our in vivo method revealed the spatial and temporal profile of physiologically evoked Ca signals, which will provide new insights into future studies of the mechanisms underlying exocrine physiology and that are disrupted in pathological conditions. KEY POINTS: In the exocrine pancreas, the spatiotemporal properties of Ca signals are fundamentally important for the appropriate stimulation of secretion by the neurotransmitter acetylcholine and gut hormone cholecystokinin. These characteristics were previously defined in ex vivo studies. Here we report the spatiotemporal characteristics of Ca signals in vivo in response to physiological stimulation in a mouse engineered to express a Ca indicator in acinar cells. Specific Ca 'signatures' probably important for stimulating secretion are evoked in vivo in fasted animals, by feeding, neural stimulation and cholecystokinin administration. The Ca signals are probably the result of the direct action of ACh and CCK on acinar cells and not indirectly through a vago-vagal reflex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/JP284469 | DOI Listing |
J Gastrointest Oncol
December 2024
Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan.
Background: Pancreatic acinar cell carcinoma (PACC) is a rare subtype of pancreatic cancer and the clinicopathological behavior of PACC is not yet fully understood. PACC rarely invades the main pancreatic duct (MPD), which causes intraductal growth. Thus, herein, we have reported a rare case of PACC that invaded the MPD and disseminated to the branches of the pancreatic duct (BDs) without exhibiting any continuity with the main tumor.
View Article and Find Full Text PDFBiol Direct
January 2025
Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis.
View Article and Find Full Text PDFThere are no therapies for reversing chronic organ degeneration. Non-healing degenerative wounds are thought to be irreparable, in part, by the inability of the tissue to respond to reparative stimuli. As such, treatments are typically aimed at slowing tissue degeneration or replacing cells through transplantation.
View Article and Find Full Text PDFCureus
December 2024
Department of Basic and Clinical Oral Sciences, Umm Al-Qura University, Makkah, SAU.
Objectives: Head and neck malignancies (HNMs) encompass a variety of cancers that affect the oral and para-oral tissues, the most common of which are squamous cell carcinomas. Radiotherapy is commonly used to treat these cancers, often involving radiation exposure to the salivary glands. This study aims to investigate the early impacts of radiotherapy on the internal microstructure of the salivary gland cells and identify which gland exhibits the highest level of radiosensitivity.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China.
The current mechanism by which aging reduces salivary secretion is unknown. This study investigates the mechanism of aging-related submandibular (SMG) dysfunction and evaluates the therapeutic potential of dental pulp stem cell-derived exosomes (DPSC-exos). We found that the stimulated salivary flow rate was significantly reduced in naturally aging and D-galactose-induced aging mice (D-gal mice) compared to control mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!